

January 31, 2023

Ms. Alicia Zewicki Waukesha Service Center Wisconsin Department of Natural Resources 141 NW Barstow Street, Room 180 Waukesha, WI 53188

submitted via email

RE: PLEASANT PRAIRIE ASH LANDFILL LICENSE #2786 - FID# 230056310 NR 506.20(3) 2022 ANNUAL CCR REPORT

Dear Ms. Zewicki:

This report is submitted as required per NR 506.20(3) and will be placed in the facility operating record. The report consists of the following attachments:

- 2022 fugitive dust control report [per NR 506.20(3)(a)]
- 2022 inspection report [per NR 506.20(3)(b)]
- 2022 groundwater monitoring and corrective action report [per NR 506.20(3)(c)]
- 2022 leachate pipe cleaning and inspection report [per NR 506.20(3)(d)]

Copies of the annual fugitive dust and inspection reports (listed above) are already available online at <a href="https://www.we-energies.com/environment/coal-combustion">https://www.we-energies.com/environment/coal-combustion</a> (the company website). A copy of the annual groundwater monitoring and corrective action report will be placed on the company website in early March 2023.

Please contact me at 414.221-2457 or <a href="mailto:eric.kovatch@wecenergygroup.com">eric.kovatch@wecenergygroup.com</a> should you have any questions.

Sincerely,

Eric P. Kovatch

Facility Manager – Senior Environmental Consultant

cc: Mark Peters (WDNR)

Attachments: Appendices A through D (as listed above)

[File:\2023-01-31 PPPP CCR NR506 Annual Report for WDNR]

#### APPENDIX A

# 2022 FUGITIVE DUST CONTROL REPORT [PER NR 506.20(3)(A)]

## 2022 ANNUAL FUGITIVE DUST CONTROL REPORT PLEASANT PRAIRIE ASH LANDFILL

#### 1.0 INTRODUCTION

This annual fugitive dust control report has been prepared to meet the requirements of 40 CFR 257.80(c).

The Pleasant Prairie Ash Landfill consists of one cell that went into operation during the 4th Quarter of 2014. Under normal conditions and circumstances, nearly 100 percent of CCR generated at the Pleasant Prairie Power Plant (PPPP) was beneficially utilized. Disposal activities at the landfill are generally limited to CCR system cleanings during PPPP outages and other special events. PPPP ceased commercial operation in early 2018. The Pleasant Prairie Ash Landfill was closed (though the operating license has been retained and remains active) as part of plant decommissioning activities in December 2021.

#### 2.0 FUGITIVE DUST CONTROL MEASURES

Fugitive dust control measures are described in Section 2.0 of the Fugitive Dust Control Plan, Pleasant Prairie Ash Landfill, dated October 19, 2015. Effectiveness of the Fugitive Dust Control Plan is evaluated during the weekly and annual inspections. A review of the weekly and annual inspections contained in the operating record was completed during the preparation of this annual fugitive dust control report and confirms that the fugitive dust control measures implemented at the Pleasant Prairie Ash Landfill are effective. The Cell 1 final cover was placed and closed in three separate phases, which included:

- Phase 1. Approximately 2.6 acres of final cover was installed in late 2018
- Phase 2. Approximately 3.1 acres of final cover was installed in late 2020
- Phase 3. Approximately 1.3 acres of final cover was installed in late 2021

#### 3.0 CITIZEN COMPLAINTS

The procedure for logging citizen complaints is described in Section 3.0 of the Fugitive Dust Control Plan, Pleasant Prairie Ash Landfill, dated October 19, 2015. There were no citizen complaints associated with the Pleasant Prairie Ash Landfill that were logged during the period covered by this annual report.

#### APPENDIX B

# 2022 INSPECTION REPORT [PER NR 506.20(3)(B)]



Consulting
Engineers and
Scientists

December 19, 2022 Project 2103683

Mr. Eric Kovatch, P.G. WEC Energy Group – Business Services, LLC 333 W. Everett Street, A231 Milwaukee, Wisconsin 53203

Re: 2002 Landfill Inspection Report Pleasant Prairie Power Plant Ash Landfill

Pleasant Prairie, Wisconsin

Dear Mr. Kovatch:

GEI Consultants, Inc. (GEI) is pleased to provide this 2022 landfill inspection report for the Pleasant Prairie Power Plant (PPPP) Ash Landfill. The inspection was completed to comply with 40 CFR 257 Subpart D – Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments and specifically with § 257.84(b) Annual inspections by a qualified professional engineer.

#### § 257.84 Inspection Requirements for CCR Landfills

- (b) Annual inspections by a qualified professional engineer.
  - (1) Existing and new CCR landfills and any lateral expansion of a CCR landfill must be inspected on a periodic basis by a qualified professional engineer to ensure that the design, construction, operation, and maintenance of the CCR unit is consistent with recognized and generally accepted good engineering standards. The inspection must, at a minimum, include:
    - (i) A review of available information regarding the status and condition of the CCR unit, including, but not limited to, files available in the operating record (e.g., the results of inspections by a qualified person and results of previous annual inspections); and
    - (ii) A visual inspection of the CCR unit to identify signs of distress or malfunction of the CCR unit.
  - (2) *Inspection report*. The qualified professional engineer must prepare a report following each inspection that addresses the following:
    - (i) Any changes in geometry of the structure since the previous annual inspection;
    - (ii) The approximate volume of CCR contained in the unit at the time of the inspection;
    - (iii) Any appearances of an actual or potential structural weakness of the CCR unit, in addition to any existing conditions that are disrupting or have the potential to disrupt the operation and safety of the CCR unit; and
    - (iv) Any other change(s) which may have affected the stability or operation of the CCR unit since the previous annual inspection.

#### **Background**

We Energies owns and operates a solid waste disposal facility adjacent to PPPP in Section 9, Township 1 North, Range 22 East, in the village of Pleasant Prairie, Kenosha County, Wisconsin. The landfill property is bounded on the north by State Highway 50 (75th Street), on the south by Bain Station Road, and on the east and west by active rail lines. The We Energies PPPP Ash Landfill is regulated as an industrial waste landfill by the Wisconsin Department of Natural Resources (WDNR) under the provisions of Chapter 289 Wisconsin State Statues, and all applicable requirement of Chapters NR 500 of the Wisconsin Administrative Code.

The design, construction, operation, closure, and post-closure care requirements are specified in the WDNR conditionally approved Plan of Operations, License No. 2786, FID# 230056310. Cell 1 of the PPPP Ash Landfill was reconstructed in 2013-2014 with an area of 7.4 acres and a design airspace capacity of 199,200 cy.

On August 31, 2018, a Plan of Operation Modification was submitted to the WDNR for the premature closure of Cell 1. The Plan of Operation Modification included a proposal to modify the final waste grades of Cell 1 to 5% to allow construction of the final cover. Premature closure of Cell 1 occurred to reduce leachate production and operational expenses of the landfill due to the decommissioning of the power plant. Final cover over Cell 1 was constructed over a period of three phases, with the first phase (eastern 2.6 acres) approved by the WDNR on July 18, 2019, the second phase (central 3.2 acres) approved by the WDNR on March 15, 2021, and the third phase (western 1.3 acres) approved by the WDNR on July 17, 2022. The We Energies PPPP Ash Landfill contains approximately 113,000 cubic yards of CCR, is closed, and will begin its post closure care period once receiving its closure licensing from WDNR.

GEI was retained to perform an annual inspection of the landfill in compliance with § 257.84(b) Annual inspections by a qualified professional engineer. The inspection was performed on December 8, 2022. Copies of the site location figure, landfill inspection forms, and inspection photo log are appended to this letter-report and constitute the entirety of the report.

#### Site Inspections

Review of the weekly inspections by a qualified person was conducted as part of the annual site inspection. There were no significant issues identified during the weekly inspections and action items were addressed in a timely manner. The weekly inspections are included in the operating record. This inspection also included a review of the previous annual inspection report contained in the operating record.

The annual site inspection included an inspection of the perimeter berms, and slopes, final covers, interior and exterior storm water controls, the leachate collection sump controls, the leachate storage and load-out controls, the leachate load-out pad, the site access road, and the cell entrance.

There were no signs or evidence of any distress or malfunction of the CCR unit, or any conditions that safety of the CCR unit. The perimeter berms did not show any evidence of structural weakness, erosion, or instability. The leachate sump and load-out facilities were operational and being properly maintained. The interior and exterior storm water controls were free of obstruction and operational. The access road, load-out pad and cell entrance were clean and free of obstructions. The overall final cover had a good growth of vegetation, with no visual bare areas.

#### Closing

The annual inspection of the We Energies PPPP Ash Landfill was completed in compliance with § 257.84(b) Annual inspections by a qualified professional engineer. Overall, the landfill is in very good condition. The final cover system is currently being installed was completed over the western 1.2 acres, thus further reducing the potential for fugitive dust generation, contact water run-off, and storm water run-on with placed ash. The leachate system is functioning as designed and the landfill operators are keeping up with leachate hauling. Based on my observations and discussions with the landfill personnel the landfill is constructed and being operated in accordance with WDNR License No. 2786, FID# 230056310.

The inspection was completed by William Butler, P.E. I hereby certify that I am a licensed professional engineer in the State of Wisconsin in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in 40 CFR 257.84.

If you have any questions regarding this landfill inspection, please contact me at 920-471-0884.

Sincerely, GEI CONSULTANTS, INC.

William Butler, P.E.

Senior Geotechnical Engineer

John M. Trast, P.E. D.GE

Vice President

Attachments:

Landfill Inspection Form 12/8/2022 Landfill Inspection Photo Log



LBW:cah

 $K: WEC\ Energy\ Group \ \ 103683\_WEC\ CCR\ Facility\ Engineering\ Assistance \ \ 105\_In\_Progress \ PPPP\ CCR\ Annual\ Inspection \ \ 101\_R2103683\ We\_PPPP\ LF\_Inspection\ 2022\_Draft\_RPT.docx$ 

Form Date: 11/30/2020

#### PLEASANT PRAIRIE ASH LANDFILL - ANNUAL INSPECTION & CONDITION SUMMARY

**INSPECTOR:** William Butler, PE **INSPECTION DATE/TIME:** 12/8/2022

**WEATHER:** 

38° F Temperature: Conditions: **Overcast** Wind: Moderate Wind Direction: SW Precipitation: None

**LEACHATE COLLECTION SYSTEM:** 

Load-out Facility: Sump:

> No High level alarms: Pump #1: Available No Pump #2: Available Low level alarms: No Available Leak alarms Control Panel:

P1=10" / P2=8" 1.6 ft Level: Level Sensor 1:

Ultrasonic Level Volume: 8030 gallons Note: 50" sump level equates to 12" of head

> Available Pump: on base liner Good

Comments: Leachate collection system is in good working condition. Leachate levels are being maintained in compliance with the operating license requirements.

#### STABILITY/EROSION OF FINAL COVERS & WASTE SLOPES:

Waste Slopes: ☑ Comments:

Pad Condition:

The eastern 2.6 acres were closed in late 2018, the middle 3.2 acres were closed in late 2020 and western 1.3 acres closed in 2022. . The final cover slopes appear stable with no observed instability, no significant erosion, no woody vegetation, or no animal burrows. Everything with the crest appeared to

be in good condition with no observed instability or significant erosion.

Note: Check mark indicates slope appears stable and no significant erosion.

#### **LANDFILL OPERATIONS:**

**Fugitive Dust Control:** Stormwater Management

Airbourne Dust Visible: No Sign of Recent Dust Deposition: No

Comments: The landfill currently does not have an active landfill surface and does not intend to create additional airsp[ace with

a lateral expansion. The landfill is in the proess of becoming administratively close and will subsequently begin its

post closure care period.

Note: Check mark indicates that the features are acceptable.



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

|                  | Duamaga and No. 1 | DATE:            | LATITUDE:         | LONGITUDE: |
|------------------|-------------------|------------------|-------------------|------------|
| PHOTOGRAPH NO: 1 | December 8, 2022  | 42.5647209460967 | -87.9038932584482 |            |
|                  |                   |                  |                   |            |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Looking north at the loadout pad area



#### рното ву:

#### BILL BUTLER

| PHOTOGRAPH NO: 2 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO. 2 | December 8, 2022 | 42.5651926039678 | -87.9041685085792 |

**SITE LOCATION:** PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Control panels at loadout station



#### рното ву:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| Buotochanu No. 2 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO: 3 | December 8, 2022 | 42.5652028052379 | -87.9038712945214 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

Looking south at building



#### рното ву:

#### BILL BUTLER

| Dueze en la ville. 4 | DATE:            | LATITUDE:        | LONGITUDE:        |
|----------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO: 4     | December 8, 2022 | 42.5653680795218 | -87.9038952726176 |
|                      |                  |                  |                   |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

West slope of cell 1, looking south. Slope is well vegetated, which was planted in 2022



#### РНОТО ВҮ:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| PHOTOGRAPH NO: 5 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
|                  | December 8, 2022 | 42.5654941245838 | -87.9038775582482 |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Looking East at north slope of cell 1. The dark color vegetation is the phase 3 color area, the light color vegetation in the background is the phase 1 and 2 cover areas



#### рното ву:

#### BILL BUTLER

| Duotocpanu No. C | DATE:            | LATITUDE:       | LONGITUDE:        |
|------------------|------------------|-----------------|-------------------|
| PHOTOGRAPH NO: 6 | December 8, 2022 | 42.564695398397 | -87.9039438091286 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

South slope of cell 1, looking east. The dark color vegetation is the phase 3 color area, the light color vegetation in the background is the phase 1 and 2 cover areas



#### рното ву:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| Duotocoanu No. 7 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO: 7 | December 8, 2022 | 42.5649585842378 | -87.9035306171615 |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Showing the crest vegetation growth planted for completion of cell 3 cover



рното ву:

BILL BUTLER

| PHOTOGRAPH NO: 8 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
|                  | December 8, 2022 | 42.5650184225035 | -87.9038915488429 |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Photo of the crest of cell 1. Photo taken at west end of cover, looking east.



рното ву:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| Рнотодгарн No: 9 | DATE:            | LATITUDE:        | LONGITUDE:        |
|------------------|------------------|------------------|-------------------|
|                  | December 8, 2022 | 42.5653041052899 | -87.8996461453413 |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

#### **DESCRIPTION:**

Looking at the north slope of cell 1, taken at east side looking west



#### рното ву:

#### BILL BUTLER

| PHOTOGRAPH NO: 10 | DATE:            | LATITUDE:       | LONGITUDE:        |
|-------------------|------------------|-----------------|-------------------|
| PHOTOGRAPH NO. 10 | December 8, 2022 | 42.565031029146 | -87.8996181405556 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

Looking at crest of cell 1, taken at east side looking west



#### РНОТО ВҮ:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| PHOTOGRAPH NO: 11 | DATE:            | LATITUDE:        | LONGITUDE:        |
|-------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO. 11 | December 8, 2022 | 42.5645984000194 | -87.8989861795719 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

Looking at east slope of cell 1, looking in the northwest direction



#### рното ву:

#### BILL BUTLER

| Duotocpanu No. 13 | DATE:            | LATITUDE:        | LONGITUDE:        |
|-------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO: 12 | December 8, 2022 | 42.5645505908226 | -87.8991910470882 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

#### **DESCRIPTION:**

Looking at the south slope of cell 1, taken at east end of cell, looking west



#### РНОТО ВҮ:



**Project:** We Energies PPPP Landfill Inspection

Client: WEC Energy Group GEI Proj. No.: 2103683

| Duotochanu No. 12 | DATE:            | LATITUDE:        | LONGITUDE:        |
|-------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO: 13 | December 8, 2022 | 42.5638889075466 | -87.9041596081722 |

SITE LOCATION: PLEASANT PRARIE, WISCONSIN

**DESCRIPTION:** 

Looking at cell 2 cover



рното ву:

BILL BUTLER

| PHOTOGRAPH NO: 14 | DATE:            | LATITUDE:        | LONGITUDE:        |
|-------------------|------------------|------------------|-------------------|
| PHOTOGRAPH NO. 14 | December 8, 2022 | 42.5638775288043 | -87.9042108580421 |

**SITE LOCATION: PLEASANT PRARIE, WISCONSIN** 

**DESCRIPTION:** 

Looking at cell 2 cover and south slope, looking northeast



рното ву:

#### **APPENDIX C**

# 2022 GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT [PER NR 506.20(3)(C)]

Prepared for

**We Energies** 

Date

January 31, 2023

Project No.

1940102327

# 2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

# 2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

Project name Pleasant Prairie Power Plant Ash Landfill

Project no. **1940102327**Recipient **We Energies** 

Document type Annual Groundwater Monitoring and Corrective Action Report

Revision FINAL

Date January 31, 2023
Prepared by Andrew F. Hardwick
Checked by Eric J. Tlachac, PE
Approved by Nathaniel R. Keller, PG

Ramboll

234 W. Florida Street

Fifth Floor

Milwaukee, WI 53204

USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Andrew F. Hardwick Geologist

Nathaniel R. Keller, PG Senior Hydrogeologist

Eric J. Tlachac, PE Senior Managing Engineer

#### **CONTENTS**

| <b>EXECU</b> | ITIVE SUMMARY                                                   | 3  |
|--------------|-----------------------------------------------------------------|----|
| 1.           | Introduction                                                    | 4  |
| 2.           | Monitoring and Corrective Action Program Status                 | 6  |
| 3.           | Key Actions Completed in 2022                                   | 7  |
| 4.           | <b>Problems Encountered and Actions to Resolve the Problems</b> | 9  |
| 5.           | Key Activities Planned for 2023                                 | 10 |
| 6.           | References                                                      | 11 |

#### **TABLES (IN TEXT)**

Table A 2021-2022 Detection Monitoring Program Summary

#### **TABLES (ATTACHED)**

| Table 1 | Croundwater | Elovations |
|---------|-------------|------------|
| Table 1 | Groundwater | Elevations |

Table 2 Analytical Results - Appendix III Parameters

Table 3 Statistical Background Values

#### **FIGURES (ATTACHED)**

| Figure 1 | Monitoring Well Location Map |
|----------|------------------------------|
|----------|------------------------------|

Figure 2 Potentiometric Surface Map, October 12, 2021
Figure 3 Potentiometric Surface Map, April 13, 2022
Figure 4 Potentiometric Surface Map, October 5, 2022

#### **APPENDICES**

| Appendix A Lab | poratory Repo | orts |
|----------------|---------------|------|
|----------------|---------------|------|

Appendix B Statistical Methodology for Determination of Background Values

Appendix C Alternate Source Demonstration

#### **ACRONYMS AND ABBREVIATIONS**

§ Section

40 C.F.R. Title 40 of the Code of Federal Regulations

ASD Alternate Source Demonstration
CCR Coal Combustion Residuals
GWPS groundwater protection standard

NA not applicable

P4 Pleasant Prairie Power Plant

Ramboll Ramboll Americas Engineering Solutions, Inc.

SAP Sampling and Analysis Plan
SSI Statistically Significant Increase

TBD To be Determined

#### **EXECUTIVE SUMMARY**

This report has been prepared to provide the information required by Title 40 of the Code of Federal Regulations (40 C.F.R.) Section (§) 257.90(e) for the Ash Landfill located at the Pleasant Prairie Power Plant (P4) near Pleasant Prairie, Wisconsin.

Groundwater is being monitored at the P4 Ash Landfill in accordance with the detection monitoring program requirements specified in 40 C.F.R. § 257.94.

No changes were made to the monitoring system in 2022 (no wells were installed or decommissioned).

Groundwater analytical data collected in 2022 at the P4 Ash Landfill was evaluated for statistically significant increases (SSIs) of 40 CFR § 257 Appendix III constituents over background concentrations. The following constituents and wells had SSIs reported in 2022:

• Fluoride above background prediction intervals at wells W74 and W75 in Detection Monitoring Round 10.

An Alternate Source Demonstration (ASD) prepared in 2022 demonstrated that sources other than the P4 Ash Landfill were the cause of the SSI for fluoride at wells W74 and W75.

The P4 Ash Landfill remains in the detection monitoring program in accordance with 40 C.F.R. § 257.94.

#### 1. INTRODUCTION

This report has been prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) on behalf of We Energies, to provide the information required by 40 C.F.R. § 257.90(e) for the P4 Ash Landfill located in Pleasant Prairie, Wisconsin.

In accordance with 40 C.F.R. § 257.90(e), the owner or operator of a coal combustion residuals (CCR) unit must prepare an Annual Groundwater Monitoring and Corrective Action Report for the preceding calendar year that documents the status of the Groundwater Monitoring and Corrective Action Program for the CCR unit, summarizes key actions completed, describes any problems encountered, discusses actions to resolve the problems, and projects key activities for the upcoming year. At a minimum, the annual report must contain the following information, to the extent available:

- 1. A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit.
- 2. Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken.
- 3. In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs.
- 4. A narrative discussion of any transition between monitoring programs (*e.g.*, the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at an SSI relative to background levels).
- 5. Other information required to be included in the annual report as specified in §§ 257.90 through 257.98.
- 6. A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit. At a minimum, the summary must specify all of the following:
  - i. At the start of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
  - ii. At the end of the current annual reporting period, whether the CCR unit was operating under the detection monitoring program in §257.94 or the assessment monitoring program in §257.95.
  - iii. If it was determined that there was an SSI over background for one or more constituents listed in Appendix III of §257 pursuant to §257.94(e):
    - A. Identify those constituents listed in Appendix III of §257 and the names of the monitoring wells associated with such an increase.
    - B. Provide the date when the assessment monitoring program was initiated for the CCR unit.

- iv. If it was determined that there was a statistically significant level above the groundwater protection standard [GWPS] for one or more constituents listed in Appendix IV of §257 pursuant to §257.95(g) include all of the following:
  - A. Identify those constituents listed in Appendix IV of §257 and the names of the monitoring wells associated with such an increase.
  - B. Provide the date when the assessment of corrective measures was initiated for the CCR unit.
  - C. Provide the date when the public meeting was held for the assessment of corrective measures for the CCR unit.
  - D. Provide the date when the assessment of corrective measures was completed for the CCR unit.
- v. Whether a remedy was selected pursuant to §257.97 during the current annual reporting period, and if so, the date of remedy selection.
- vi. Whether remedial activities were initiated or are ongoing pursuant to § 257.98 during the current annual reporting period.

This report provides the required information for the P4 Ash Landfill for calendar year 2022.

# 2. MONITORING AND CORRECTIVE ACTION PROGRAM STATUS

No changes have occurred to the monitoring program status in calendar year 2022 and the P4 Ash Landfill remains in the detection monitoring program in accordance with 40 C.F.R. § 257.94.

#### 3. KEY ACTIONS COMPLETED IN 2022

The detection monitoring program is summarized in **Table A** on the following page. The groundwater monitoring system, including the CCR unit and all background and compliance monitoring wells, is presented in **Figure 1**. No changes were made to the monitoring system in 2022. In general, one groundwater sample was collected from each background (upgradient) and downgradient well during each monitoring event. All samples were collected and analyzed in accordance with the *Sampling and Analysis Plan* (SAP), *Pleasant Prairie Power Plant Ash Landfill* (Natural Resource Technology, Inc., 2015). Potentiometric surface maps for the fourth quarter of 2021 and both monitoring events in 2022 are included in **Figures 2 through 4**. Water level data, collected from background and downgradient monitoring wells, are included in **Table 1**. All monitoring data and analytical results obtained under 40 C.F.R. §§ 257.90 through 257.98 (as applicable) in the fourth quarter of 2021 and both monitoring events in 2022 are presented in **Table 2**. Laboratory reports for the fourth quarter of 2021 and both 2022 monitoring events are included in **Appendix A**.

Analytical data were evaluated in accordance with the *Statistical Analysis Plan, Pleasant Prairie Power Plant Ash Landfill* (Natural Resource Technology, Inc., an OBG Company, 2017) to determine any SSIs of 40 CFR § 257 Appendix III parameters relative to background concentrations. Statistical background values are provided in **Table 3**. A flow chart showing the statistical methodology for determination of background values is included as **Appendix B**.

Statistical evaluation, including SSI determinations, of analytical data from detection monitoring sampling events on October 12, 2021 (Detection Monitoring Round 9) and April 13, 2022 (Detection Monitoring Round 10) were completed in 2022 and within 90 days of receipt of the analytical data. SSIs over background concentrations for 40 CFR § 257 Appendix III constituents were identified during data evaluations of Round 10 groundwater sampling analytical data. Additional information regarding SSI parameters and well locations is provided in **Table A**.

An ASD for SSIs determined during Detection Monitoring Round 10 was prepared within 90 days of SSI determination and is included in **Appendix C**. The ASD was prepared in accordance with 40 CFR 257.94(e)(2) and provides a description, data, and pertinent information to support that the SSIs observed during Detection Monitoring Round 10 were not due to a release from the P4 Ash Landfill but were either errors in sampling, analysis, statistical evaluation, or from naturally occurring conditions (e.g. natural variation in groundwater quality).

Table A. 2021-2022 Detection Monitoring Program Summary

|                    |                  |                                 | -                       |                           |                             |                        |
|--------------------|------------------|---------------------------------|-------------------------|---------------------------|-----------------------------|------------------------|
| Detection<br>Round | Sampling Date    | Analytical Data<br>Receipt Date | Parameters<br>Collected | SSI Wells<br>(Parameters) | SSI(s) Determination Date   | ASD Completion<br>Date |
| 9                  | October 12, 2021 | November 16, 2021               | Appendix III            | None                      | February 14, 2022           | NA                     |
| 10                 | April 13, 2022   | May 17, 2022                    | Appendix III            | W74 & W75<br>(Fluoride)   | August 15, 2022             | November 13, 2022      |
| 11                 | October 5, 2022  | December 5, 2022                | Appendix III            | TBD                       | TBD<br>Before March 5, 2023 | TBD                    |

Notes:

NA: not applicable TBD: to be determined

FINAL P4 Ash LF 2022 Annual GW Report.docx

# 4. PROBLEMS ENCOUNTERED AND ACTIONS TO RESOLVE THE PROBLEMS

No problems were encountered with the Groundwater Monitoring Program during 2022. Groundwater samples were collected and analyzed in accordance with the SAP and all data were accepted.

#### 5. KEY ACTIVITIES PLANNED FOR 2023

The following key activities are planned for 2023:

- Continuation of the detection monitoring program with semi-annual sampling scheduled for the second and fourth quarters of 2023.
- Complete evaluation of analytical data from the compliance wells using background data to determine whether an SSI of 40 CFR § 257 Appendix III parameters detected at concentrations greater than background concentrations has occurred.
- If an SSI is identified, potential alternate sources (*i.e.*, a source other than the P4 Ash Landfill caused the SSI or that the SSI resulted from error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality) will be evaluated.
  - If an alternate source is identified to be the cause of the SSI, a written demonstration will be completed within 90 days of SSI determination and included in the 2023 Annual Groundwater Monitoring and Corrective Action Report.
  - If an alternate source(s) is not identified to be the cause of the SSI, the applicable requirements of 40 C.F.R. §§ 257.94 through 257.98 as may apply in 2023 (e.g., assessment monitoring) will be met, including associated recordkeeping/notifications required by 40 C.F.R. §§ 257.105 through 257.108.

#### 6. REFERENCES

Natural Resource Technology, Inc., 2015, Sampling and Analysis Plan-Revision 1, Pleasant Prairie Power Plant Ash Landfill, Pleasant Prairie, Wisconsin, December 8, 2015.

Natural Resource Technology, Inc., an OBG Company, 2017, Statistical Analysis Plan, Pleasant Prairie Power Plant Ash Landfill, Pleasant Prairie, Wisconsin, October 17, 2017.

#### **TABLES**

TABLE 1
GROUNDWATER ELEVATIONS

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

PLEASANT PRAIRIE, WI

| Well<br>ID | Well Type                        | Latitude<br>(Degrees,<br>minutes,<br>seconds) | Longitude<br>(Degrees,<br>minutes,<br>seconds) | Date       | Groundwater<br>Elevation<br>(ft NAVD88) |
|------------|----------------------------------|-----------------------------------------------|------------------------------------------------|------------|-----------------------------------------|
|            |                                  |                                               |                                                | 10/12/2021 | 665.20                                  |
| W20D       | Background<br>(Upgradient)       | 42°33'51.3592"                                | -87°54'15.0776"                                | 04/13/2022 | 671.03                                  |
|            | (opgradient)                     |                                               |                                                | 10/05/2022 | 666.09                                  |
|            |                                  |                                               |                                                | 10/12/2021 | 664.30                                  |
| W77        | Background<br>(Upgradient)       | 42°33'45.2513"                                | -87°53'54.2383″                                | 04/13/2022 | 669.96                                  |
|            | (opgradient)                     |                                               |                                                | 10/05/2022 | 666.86                                  |
|            |                                  |                                               |                                                | 10/12/2021 | 664.33                                  |
| W73        | Compliance<br>(Downgradient)     | 42°33'57.0560"                                | -87°53'57.3214"                                | 04/13/2022 | 668.93                                  |
|            | , J                              |                                               |                                                | 10/05/2022 | 667.59                                  |
|            |                                  |                                               |                                                | 10/12/2021 | 662.85                                  |
| W74        | Compliance<br>(Downgradient)     | 42°33'56.9099"                                | -87°54'14.3343"                                | 04/13/2022 | 668.24                                  |
|            | , J                              |                                               |                                                | 10/05/2022 | 663.50                                  |
|            |                                  |                                               |                                                | 10/12/2021 | 663.66                                  |
| W75        | Compliance<br>(Downgradient)     | 42°33'56.8116"                                | -87°54'08.8120"                                | 04/13/2022 | 668.60                                  |
|            |                                  |                                               |                                                | 10/05/2022 | 664.58                                  |
|            |                                  |                                               |                                                | 10/12/2021 | 663.94                                  |
| W76        | Compliance<br>(Downgradient)     | 42°33'56.4738"                                | -87°54'01.8036"                                | 04/13/2022 | 668.75                                  |
|            | , ,                              |                                               |                                                | 10/05/2022 | 665.38                                  |
|            | POTENTIAL                        |                                               |                                                | 10/12/2021 | 675.12                                  |
| W17B<br>R  | CONTAMINANT<br>MIGRATION PATHWAY | 42°33'57.3084"                                | -87°53'59.9346"                                | 04/13/2022 | 678.40                                  |
|            | MONITORING WELL                  |                                               |                                                | 10/05/2022 | 676.64                                  |
|            | POTENTIAL                        |                                               |                                                | 10/12/2021 | 678.57                                  |
| W20B       | CONTAMINANT<br>MIGRATION PATHWAY | 42°33'51.3396"                                | -87°54'14.8968"                                | 04/13/2022 | 681.83                                  |
|            | MONITORING WELL                  |                                               |                                                | 10/05/2022 | 679.28                                  |



## TABLE 1 GROUNDWATER ELEVATIONS

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

PLEASANT PRAIRIE, WI

| Well<br>ID | Well Type                        | Latitude<br>(Degrees,<br>minutes,<br>seconds) | Longitude<br>(Degrees,<br>minutes,<br>seconds) | Date       | Groundwater<br>Elevation<br>(ft NAVD88) |
|------------|----------------------------------|-----------------------------------------------|------------------------------------------------|------------|-----------------------------------------|
|            | POTENTIAL                        |                                               |                                                | 10/12/2021 | 679.96                                  |
| W31B       | CONTAMINANT<br>MIGRATION PATHWAY | 42°33'43.1382"                                | -87°54'14.403"                                 | 04/13/2022 | 682.13                                  |
|            | MONITORING WELL                  |                                               |                                                | 10/05/2022 | 680.68                                  |

#### Notes:

ft = foot/feet

NAVD88 = North American Vertical Datum of 1988



Date Range: 10/01/2021 to 12/31/2022

Lab Methods:

| Well Id | Date<br>Sampled | Lab Id  | B, tot, mg/L | Ca, tot, mg/L | CI, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
|---------|-----------------|---------|--------------|---------------|---------------|--------------|-----------------|----------------|
| W17BR   | 10/12/2021      | AE56415 | 0.6440       | 11.8000       | 8.0           | 1.40         | 8.2             | 17.4           |
|         | 4/13/2022       | AE60061 | 0.6080       | 11.5000       | 8.0           | 1.30         | 8.4             | 17.9           |
|         | 10/5/2022       | AE63006 | 0.5970       | 11.5000       | 8.6           | 1.50         | 8.6             | 19.0           |
| W20B    | 10/12/2021      | AE56409 | 0.3060       | 92.9000       | 32.1          | 0.62         | 7.1             | 192.0          |
|         | 4/13/2022       | AE60065 | 0.3000       | 57.2000       | 15.0          | 0.89         | 7.5             | 97.8           |
|         | 10/5/2022       | AE63001 | 0.3050       | 67.3000       | 23.4          | 0.79         | 7.4             | 138.0          |
| W20D    | 10/12/2021      | AE56410 | 0.4440       | 25.3000       | 11.0          | 1.10         | 7.5             | 177.0          |
|         | 4/13/2022       | AE60066 | 0.4280       | 25.8000       | 10.8          | 1.20         | 7.8             | 181.0          |
|         | 10/5/2022       | AE62999 | 0.4030       | 23.7000       | 11.9          | 1.10         | 7.1             | 178.0          |
| W31B    | 10/12/2021      | AE56418 | 0.0806       | 104.0000      | 66.9          | <0.48        | 7.4             | 130.0          |
|         | 4/13/2022       | AE60067 | 0.0863       | 108.0000      | 67.9          | 0.36         | 7.3             | 139.0          |
|         | 10/5/2022       | AE63002 | 0.0883       | 99.1000       | 78.5          | 0.22         | 7.4             | 140.0          |
| W73     | 10/12/2021      | AE56417 | 0.4390       | 18.8000       | 12.4          | 0.89         | 8.1             | 116.0          |
|         | 4/13/2022       | AE60060 | 0.4310       | 28.0000       | 11.0          | 1.00         | 8.2             | 131.0          |
|         | 10/5/2022       | AE63007 | 0.4370       | 21.2000       | 11.6          | 1.10         | 8.3             | 131.0          |
| W74     | 10/12/2021      | AE56411 | 0.4170       | 20.2000       | 12.5          | 0.98         | 8.0             | 156.0          |
|         | 4/13/2022       | AE60064 | 0.3810       | 19.3000       | 12.7          | 1.20         | 8.0             | 164.0          |
|         | 10/5/2022       | AE63003 | 0.3950       | 19.4000       | 15.5          | 1.10         | 7.9             | 172.0          |
| W75     | 10/12/2021      | AE56412 | 0.4220       | 20.3000       | 8.3           | 1.10         | 8.0             | 126.0          |
|         | 4/13/2022       | AE60063 | 0.4270       | 21.0000       | 8.7           | 1.20         | 8.1             | 135.0          |
|         | 10/5/2022       | AE63004 | 0.4040       | 18.2000       | 9.6           | 1.10         | 8.1             | 133.0          |
| W76     | 10/12/2021      | AE56413 | 0.4360       | 19.2000       | 10.4          | 0.98         | 8.3             | 133.0          |
|         | 4/13/2022       | AE60062 | 0.4150       | 18.3000       | 10.4          | 1.10         | 8.3             | 139.0          |

| Date Range: 1 | 10/01/2021 to 12/ | 31/2022 |              |               |               |              |                 |                |
|---------------|-------------------|---------|--------------|---------------|---------------|--------------|-----------------|----------------|
| Lab Methods:  | :                 |         | B, tot, mg/L | Ca, tot, mg/L | CI, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W76           | 10/5/2022         | AE63005 | 0.4280       | 18.8000       | 11.0          | 1.00         | 8.2             | 144.0          |
| W77           | 10/12/2021        | AE56416 | 0.3960       | 25.5000       | 8.0           | 1.00         | 7.6             | 123.0          |
|               | 4/13/2022         | AE60059 | 0.4030       | 26.4000       | 8.7           | <0.10        | 7.5             | 140.0          |
|               | 10/5/2022         | AE63008 | 0.4140       | 23.4000       | 8.8           | 1.20         | 7.6             | 132.0          |

Date Range: 10/01/2021 to 12/31/2022

Lab Methods:

| Well Id | Date<br>Sampled | Lab Id  | TDS, mg/L |
|---------|-----------------|---------|-----------|
| W17BR   | 10/12/2021      | AE56415 | 190.0     |
|         | 4/13/2022       | AE60061 | 162.0     |
|         | 10/5/2022       | AE63006 | 138.0     |
| W20B    | 10/12/2021      | AE56409 | 1060.0    |
|         | 4/13/2022       | AE60065 | 388.0     |
|         | 10/5/2022       | AE63001 | 466.0     |
| W20D    | 10/12/2021      | AE56410 | 602.0     |
|         | 4/13/2022       | AE60066 | 366.0     |
|         | 10/5/2022       | AE62999 | 388.0     |
| W31B    | 10/12/2021      | AE56418 | 592.0     |
|         | 4/13/2022       | AE60067 | 584.0     |
|         | 10/5/2022       | AE63002 | 586.0     |
| W73     | 10/12/2021      | AE56417 | 322.0     |
|         | 4/13/2022       | AE60060 | 344.0     |
|         | 10/5/2022       | AE63007 | 298.0     |
| W74     | 10/12/2021      | AE56411 | 402.0     |
|         | 4/13/2022       | AE60064 | 352.0     |
|         | 10/5/2022       | AE63003 | 332.0     |
| W75     | 10/12/2021      | AE56412 | 382.0     |
|         | 4/13/2022       | AE60063 | 320.0     |
|         | 10/5/2022       | AE63004 | 302.0     |
| W76     | 10/12/2021      | AE56413 | 362.0     |
|         | 4/13/2022       | AE60062 | 330.0     |

Date Range: 10/01/2021 to 12/31/2022

Lab Methods:

TDS, mg/L

W76 10/5/2022 AE63005 288.0

W77 10/12/2021 AE56416 362.0

4/13/2022 AE60059 348.0

10/5/2022 AE63008 328.0

**Notes:** 

Exceedance of Background

#### TABLE 3

#### STATISTICAL BACKGROUND VALUES

2022 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

PLEASANT PRAIRIE, WI

| Parameter                       | Statistical Background Value (LPL/UPL) |  |  |  |  |  |  |  |
|---------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| 40 C.F.R. Part 257 Appendix III |                                        |  |  |  |  |  |  |  |
| Boron (mg/L)                    | 0.455                                  |  |  |  |  |  |  |  |
| Calcium (mg/L)                  | 38.1                                   |  |  |  |  |  |  |  |
| Chloride (mg/L)                 | 21.3                                   |  |  |  |  |  |  |  |
| Fluoride (mg/L)                 | 1.13                                   |  |  |  |  |  |  |  |
| pH (field) (SU)                 | 7.2/9.6                                |  |  |  |  |  |  |  |
| Sulfate (mg/L)                  | 230                                    |  |  |  |  |  |  |  |
| Total Dissolved Solids (mg/L)   | 457                                    |  |  |  |  |  |  |  |

#### Notes:

[O: AFH 12/23/22; C: EJT 1/21/23]

40 C.F.R. = Title 40 of the Code of Federal Regulations

LPL = Lower Prediction Limit (applicable for pH only)

mg/L = milligrams per liter

SU = Standard Units

UPL = Upper Prediction Limit

# **FIGURES**



UNIT BOUNDARY

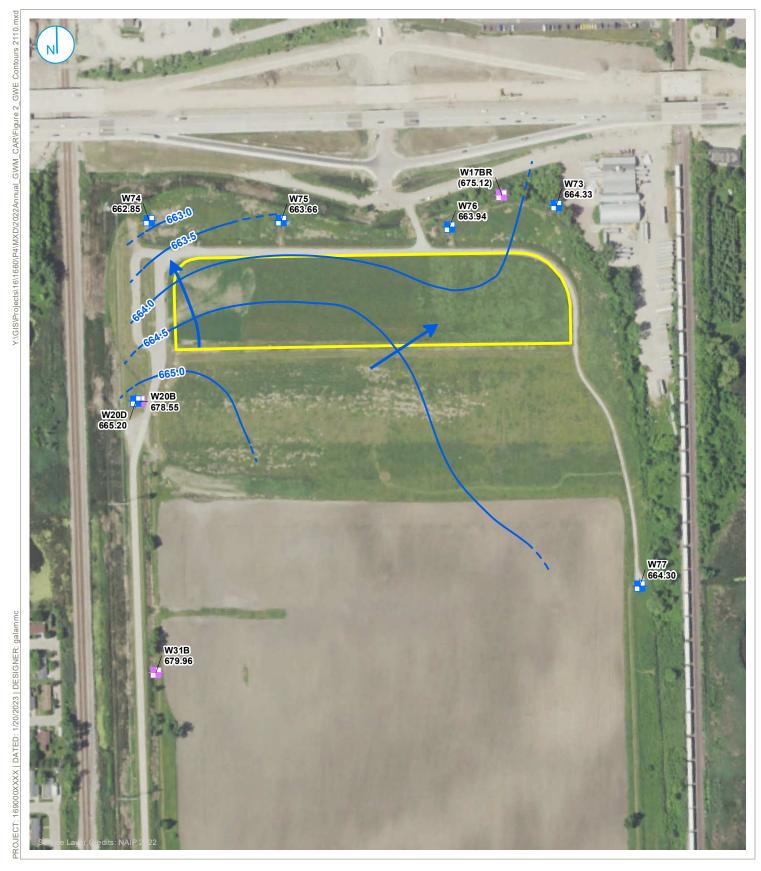
150

CCR RULE DOWNGRADIENT MONITORING WELL LOCATION

CCR RULE UPGRADIENT MONITORING WELL LOCATION

CCR RULE POTENTIAL
CONTAMINANT PATHWAY
MONITORING WELL LOCATION

300 Feet


#### **MONITORING WELL LOCATION MAP**

2022 ANNUAL GROUNDWATER MONITORING
AND CORRECTIVE ACTION REPORT
ASH LANDFILL
PLEASANT PRAIRIE POWER PLANT
PLEASANT PRAIRIE, WISCONSIN

# FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.







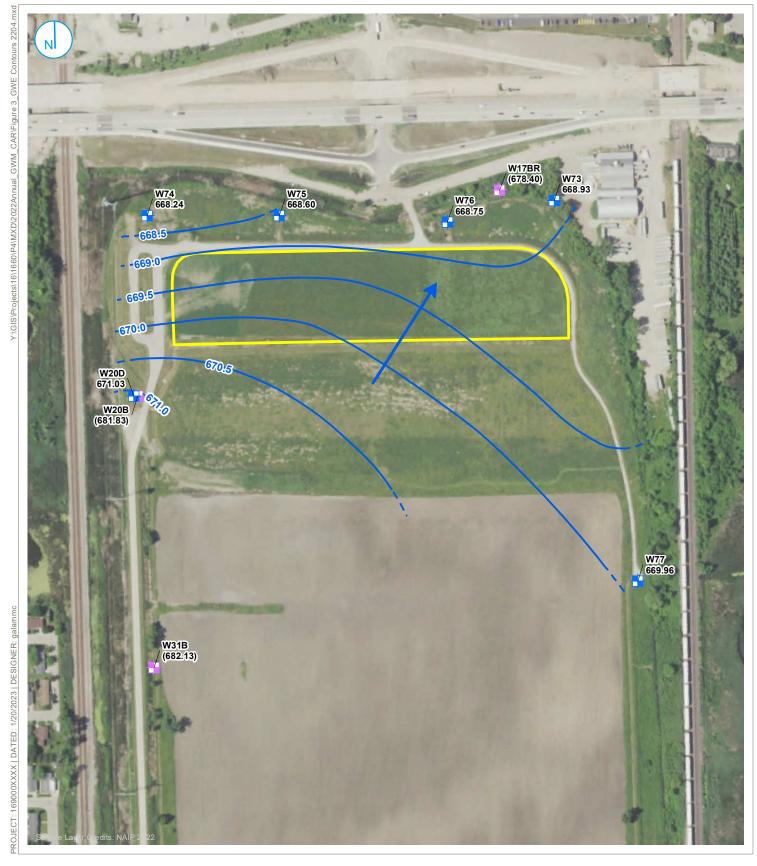
BEDROCK UNIT (UPPERMOST AQUIFER) CCR MONITORING WELL LOCATION

GLACIAL UNIT POTENTIAL CONTAMINANT PATHWAY CCR MONITORING WELL LOCATION (NOT USED FOR CONTOURING)

GROUNDWATER ELEVATION CONTOUR (0.5-FT INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR
 GROUNDWATER FLOW DIRECTION

0 150 300


# POTENTIOMETRIC SURFACE MAP OCTOBER 12, 2021

2022 ANNUAL GROUNDWATER MONITORING
AND CORRECTIVE ACTION REPORT
ASH LANDFILL
PLEASANT PRAIRIE POWER PLANT
PLEASANT PRAIRIE, WISCONSIN

# FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.





UNIT BOUNDARY

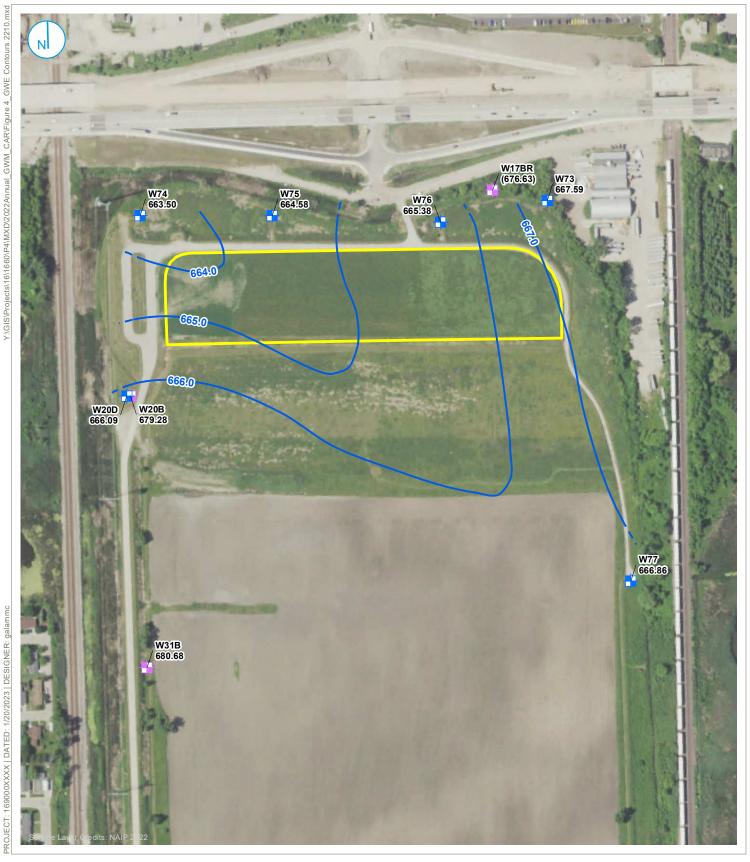
BEDROCK UNIT (UPPERMOST AQUIFER) CCR MONITORING WELL LOCATION

GLACIAL UNIT POTENTIAL CONTAMINANT PATHWAY CCR MONITORING WELL LOCATION (NOT USED FOR CONTOURING)

GROUNDWATER ELEVATION CONTOUR (0.5-FT INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION


0 150 300 Feet POTENTIOMETRIC SURFACE MAP
APRIL 13, 2022

2022 ANNUAL GROUNDWATER MONITORING
AND CORRECTIVE ACTION REPORT
ASH LANDFILL
PLEASANT PRAIRIE POWER PLANT
PLEASANT PRAIRIE, WISCONSIN

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL



UNIT BOUNDARY

BEDROCK UNIT (UPPERMOST AQUIFER) CCR MONITORING WELL LOCATION

GLACIAL UNIT POTENTIAL CONTAMINANT PATHWAY CCR MONITORING WELL LOCATION (NOT USED FOR CONTOURING)

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

0 150 300

# POTENTIOMETRIC SURFACE MAP OCTOBER 5, 2022

2022 ANNUAL GROUNDWATER MONITORING
AND CORRECTIVE ACTION REPORT
ASH LANDFILL
PLEASANT PRAIRIE POWER PLANT
PLEASANT PRAIRIE, WISCONSIN

# FIGURE 4

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.



# **APPENDICES**

# APPENDIX A LABORATORY REPORTS

To: Eric Kovatch

PSB Annex A231

From: WEC Business Services

Laboratory Services PSBA-A070 WDNR Cert # 241329000

Report Date: Tuesday, November 16, 2021

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 101221001 P4 Landfill CCR Well Sample

Sample ID: AE56409 Sample Collection Date/Time: 10/12/2021 09:00 Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|                        |        |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | Method         | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 8.43   | 0.05       | feet         |            | 1.0        |             | H2OD           | 10/12/21    | NATE DUDA      |
| Field Temperature      | 12.9   | 0.1        | Degrees C    |            | 1.0        |             | TEMP           | 10/12/21    | NATE DUDA      |
| Field Conductivity     | 1014   | 0          | umhos        |            | 1.0        |             | FCOND25        | 10/12/21    | NATE DUDA      |
| Field pH               | 7.1    | 0.1        | Units        | 0.1        | 1.0        |             | FIELDPH        | 10/12/21    | NATE DUDA      |
| Total Dissolved Solids | 1060   | 8.7        | mg/L         | 20         | 1.0        |             | Std Mtd 2540 C | 10/14/21    | 020            |
| Total Fluoride         | 0.62   | 0.48       | mg/L         | 1.6        | 5.0        | J           | EPA 300.0      | 10/14/21    | 020            |
| Total Chloride         | 32.1   | 2.2        | mg/L         | 10         | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Sulfate          | 192    | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Boron            | 306    | 17.3       | ug/L         | 40.0       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Total Calcium          | 92900  | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Calcium      | 95200  | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Chloride     | 31.7   | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Magnesium    | 55700  | 182        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Sodium       | 39800  | 350        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Sulfate      | 192    | 8.9        | mg/L         | 40.0       | 20.0       |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Potassium    | 2070   | 325        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
|                        |        |            |              |            |            |             |                |             |                |

Sample Comments:

Sample Description: 101221002 P4 Landfill CCR Well Sample

Sample ID: AE56410 Sample Collection Date/Time: 10/12/2021 09:29
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| Parameter              | Result | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | Analyst   |
|------------------------|--------|------------|--------------|------|------------|-----------------------|---------------------------|-------------------------|-----------|
|                        |        |            |              |      |            | _                     | ***                       | 10/10/01                |           |
| Field Water Level      | 23.21  | 0.05       | feet         |      | 1.0        |                       | H2OD                      | 10/12/21                | NATE DUDA |
| Field Temperature      | 13.6   | 0.1        | Degrees C    |      | 1.0        |                       | TEMP                      | 10/12/21                | NATE DUDA |
| Field Conductivity     | 625    | 0          | umhos        |      | 1.0        |                       | FCOND25                   | 10/12/21                | NATE DUDA |
| Field pH               | 7.5    | 0.1        | Units        | 0.1  | 1.0        |                       | FIELDPH                   | 10/12/21                | NATE DUDA |
| Total Dissolved Solids | 602    | 8.7        | mg/L         | 20.0 | 1.0        |                       | Std Mtd 2540 C            | 10/14/21                | 020       |
| Total Fluoride         | 1.1    | 0.48       | mg/L         | 1.6  | 5.0        | J                     | EPA 300.0                 | 10/14/21                | 020       |
| Total Chloride         | 11.0   | 2.2        | mg/L         | 10.0 | 5.0        |                       | EPA 300.0                 | 10/14/21                | 020       |
| Total Sulfate          | 177    | 2.2        | mg/L         | 10.0 | 5.0        |                       | EPA 300.0                 | 10/14/21                | 020       |
| Total Boron            | 444    | 17.3       | ug/L         | 40.0 | 1.0        |                       | EPA 200.7                 | 10/18/21                | 020       |
| Total Calcium          | 25300  | 114        | ug/L         | 500  | 1.0        |                       | EPA 200.7                 | 10/18/21                | 020       |
| Dissolved Calcium      | 26100  | 114        | ug/L         | 500  | 1.0        |                       | EPA 200.7                 | 10/18/21                | 020       |
| Dissolved Chloride     | 12.0   | 2.2        | mg/L         | 10.0 | 5.0        |                       | EPA 300.0                 | 10/14/21                | 020       |
|                        |        |            |              |      |            |                       |                           |                         |           |

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 101221002 P4 Landfill CCR Well Sample

Sample ID: AE56410 Sample Collection Date/Time: 10/12/2021 09:29
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Parameter</u>    | Result | <u>LOD</u> | <u>Units</u> | LOQ  | DIL  | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|---------------------|--------|------------|--------------|------|------|-----------------------|---------------------------|-------------------------|----------------|
| Dissolved Magnesium | 16800  | 182        | ug/L         | 1000 | 1.0  |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sodium    | 81300  | 3500       | ug/L         | 5000 | 10.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sulfate   | 180    | 2.2        | mg/L         | 10.0 | 5.0  |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Potassium | 3590   | 325        | ug/L         | 1000 | 1.0  |                       | EPA 200.7                 | 10/14/21                | 020            |

Sample Comments:

Sample Description: 101221003 P4 Landfill CCR Well Sample

Sample ID: AE56411 Sample Collection Date/Time: 10/12/2021 10:08
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|                        |        |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | Method         | <u>Date</u> | <b>Analyst</b> |
| Field Water Level      | 23.98  | 0.05       | feet         |            | 1.0        |             | H2OD           | 10/12/21    | NATE DUDA      |
| Field Temperature      | 12.0   | 0.1        | Degrees C    |            | 1.0        |             | TEMP           | 10/12/21    | NATE DUDA      |
| Field Conductivity     | 506    | 0          | umhos        |            | 1.0        |             | FCOND25        | 10/12/21    | NATE DUDA      |
| Field pH               | 8.0    | 0.1        | Units        | 0.1        | 1.0        |             | FIELDPH        | 10/12/21    | NATE DUDA      |
| Total Dissolved Solids | 402    | 8.7        | mg/L         | 20.0       | 1.0        |             | Std Mtd 2540 C | 10/14/21    | 020            |
| Total Fluoride         | 0.98   | 0.48       | mg/L         | 1.6        | 5.0        | J           | EPA 300.0      | 10/14/21    | 020            |
| Total Chloride         | 12.5   | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Sulfate          | 156    | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Boron            | 417    | 17.3       | ug/L         | 40.0       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Total Calcium          | 20200  | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Calcium      | 20400  | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Chloride     | 13.7   | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Magnesium    | 15800  | 182        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Sodium       | 82100  | 350        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |
| Dissolved Sulfate      | 165    | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Potassium    | 2380   | 325        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/18/21    | 020            |

Sample Comments:

Sample Description: 101221004 P4 Landfill CCR Well Sample

Sample ID: AE56412 Sample Collection Date/Time: 10/12/2021 10:47
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | LOQ  | DIL | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|--------|------------|--------------|------|-----|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 26.25  | 0.05       | feet         |      | 1.0 |                       | H2OD                      | 10/12/21                | NATE DUDA      |
| Field Temperature      | 14.3   | 0.1        | Degrees C    |      | 1.0 |                       | TEMP                      | 10/12/21                | NATE DUDA      |
| Field Conductivity     | 541    | 0          | umhos        |      | 1.0 |                       | FCOND25                   | 10/12/21                | NATE DUDA      |
| Field pH               | 8.0    | 0.1        | Units        | 0.1  | 1.0 |                       | FIELDPH                   | 10/12/21                | NATE DUDA      |
| Total Dissolved Solids | 382    | 8.7        | mg/L         | 20.0 | 1.0 |                       | Std Mtd 2540 C            | 10/14/21                | 020            |
| Total Fluoride         | 1.1    | 0.48       | mg/L         | 1.6  | 5.0 | J                     | EPA 300.0                 | 10/14/21                | 020            |

The following are the analytical results for samples received by Laboratory Services:

| Sample Description: | 101221004 | P4 Landfill CCR | Wall Sample  |
|---------------------|-----------|-----------------|--------------|
| Sample Describuon:  | 101221004 | r4 Landini CCK  | . wen Samble |

Sample ID: AE56412 Sample Collection Date/Time: 10/12/2021 10:47
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|        |                                                               |                                                                                                           |                                                                                                                                |                                                                                                                                                                          | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | <u>LOD</u>                                                    | <u>Units</u>                                                                                              | <u>LOQ</u>                                                                                                                     | <u>DIL</u>                                                                                                                                                               | <u>Flag</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>Date</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>Analyst</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.3    | 2.2                                                           | mg/L                                                                                                      | 10.0                                                                                                                           | 5.0                                                                                                                                                                      | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 126    | 2.2                                                           | mg/L                                                                                                      | 10.0                                                                                                                           | 5.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 422    | 17.3                                                          | ug/L                                                                                                      | 40.0                                                                                                                           | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20300  | 114                                                           | ug/L                                                                                                      | 500                                                                                                                            | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20300  | 114                                                           | ug/L                                                                                                      | 500                                                                                                                            | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10.2   | 2.2                                                           | mg/L                                                                                                      | 10.0                                                                                                                           | 5.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13300  | 182                                                           | ug/L                                                                                                      | 1000                                                                                                                           | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 73500  | 350                                                           | ug/L                                                                                                      | 500                                                                                                                            | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 134    | 2.2                                                           | mg/L                                                                                                      | 10.0                                                                                                                           | 5.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3050   | 325                                                           | ug/L                                                                                                      | 1000                                                                                                                           | 1.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 8.3<br>126<br>422<br>20300<br>20300<br>10.2<br>13300<br>73500 | 8.3 2.2<br>126 2.2<br>422 17.3<br>20300 114<br>20300 114<br>10.2 2.2<br>13300 182<br>73500 350<br>134 2.2 | 8.3 2.2 mg/L 126 2.2 mg/L 422 17.3 ug/L 20300 114 ug/L 20300 114 ug/L 10.2 2.2 mg/L 13300 182 ug/L 73500 350 ug/L 134 2.2 mg/L | 8.3 2.2 mg/L 10.0 126 2.2 mg/L 10.0 422 17.3 ug/L 40.0 20300 114 ug/L 500 20300 114 ug/L 500 10.2 2.2 mg/L 10.0 13300 182 ug/L 1000 73500 350 ug/L 500 134 2.2 mg/L 10.0 | 8.3       2.2       mg/L       10.0       5.0         126       2.2       mg/L       10.0       5.0         422       17.3       ug/L       40.0       1.0         20300       114       ug/L       500       1.0         20300       114       ug/L       500       1.0         10.2       2.2       mg/L       10.0       5.0         13300       182       ug/L       1000       1.0         73500       350       ug/L       500       1.0         134       2.2       mg/L       10.0       5.0 | Result         LOD         Units         LOQ         DIL         Flag           8.3         2.2         mg/L         10.0         5.0         J           126         2.2         mg/L         10.0         5.0         J           422         17.3         ug/L         40.0         1.0         J         0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 | Result         LOD         Units         LOQ         DIL         Flag         Method           8.3         2.2         mg/L         10.0         5.0         J         EPA 300.0           126         2.2         mg/L         10.0         5.0         EPA 300.0           422         17.3         ug/L         40.0         1.0         EPA 200.7           20300         114         ug/L         500         1.0         EPA 200.7           20300         114         ug/L         500         1.0         EPA 200.7           10.2         2.2         mg/L         10.0         5.0         EPA 300.0           13300         182         ug/L         1000         1.0         EPA 200.7           73500         350         ug/L         500         1.0         EPA 200.7           134         2.2         mg/L         10.0         5.0         EPA 300.0 | Result         LOD         Units         LOQ         DIL         Flag         Method         Date           8.3         2.2         mg/L         10.0         5.0         J         EPA 300.0         10/14/21           126         2.2         mg/L         10.0         5.0         EPA 300.0         10/14/21           422         17.3         ug/L         40.0         1.0         EPA 200.7         10/14/21           20300         114         ug/L         500         1.0         EPA 200.7         10/14/21           20300         114         ug/L         500         1.0         EPA 200.7         10/14/21           10.2         2.2         mg/L         10.0         5.0         EPA 300.0         10/14/21           13300         182         ug/L         1000         1.0         EPA 200.7         10/14/21           73500         350         ug/L         500         1.0         EPA 200.7         10/14/21           134         2.2         mg/L         10.0         5.0         EPA 300.0         10/14/21 |

Sample Comments:

Sample Description: 101221005 P4 Landfill CCR Well Sample

Sample ID: AE56413 Sample Collection Date/Time: 10/12/2021 11:18
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|                        |               |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|---------------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | <u>Result</u> | <b>LOD</b> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | Method         | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 27.69         | 0.05       | feet         |            | 1.0        |             | H2OD           | 10/12/21    | NATE DUDA      |
| Field Temperature      | 11.6          | 0.1        | Degrees C    |            | 1.0        |             | TEMP           | 10/12/21    | NATE DUDA      |
| Field Conductivity     | 544           | 0          | umhos        |            | 1.0        |             | FCOND25        | 10/12/21    | NATE DUDA      |
| Field pH               | 8.3           | 0.1        | Units        | 0.1        | 1.0        |             | FIELDPH        | 10/12/21    | NATE DUDA      |
| Total Dissolved Solids | 362           | 8.7        | mg/L         | 20.0       | 1.0        |             | Std Mtd 2540 C | 10/14/21    | 020            |
| Total Fluoride         | 0.98          | 0.48       | mg/L         | 1.6        | 5.0        | J           | EPA 300.0      | 10/14/21    | 020            |
| Total Chloride         | 10.4          | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Sulfate          | 133           | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Boron            | 436           | 17.3       | ug/L         | 40.0       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Total Calcium          | 19200         | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Calcium      | 19200         | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Chloride     | 11.9          | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Magnesium    | 12100         | 182        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sodium       | 76400         | 350        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sulfate      | 139           | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Potassium    | 2650          | 325        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
|                        |               |            |              |            |            |             |                |             |                |

Sample Comments:

Sample Description: 101221006 P4 Landfill CCR Well Sample

Sample ID: AE56414 Sample Collection Date/Time: 10/12/2021 11:23
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

Parameter Result LOD Units LOQ DIL Flag Method Date Analysis

Result Analysis Analysis

Analysis

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 101221006 P4 Landfill CCR Well Sample

Sample ID: AE56414 Sample Collection Date/Time: 10/12/2021 11:23
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Parameter</u>       | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | DIL | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|---------------|------------|--------------|------|-----|-----------------------|---------------------------|-------------------------|----------------|
| Total Dissolved Solids | 348           | 8.7        | mg/L         | 20.0 | 1.0 |                       | Std Mtd 2540 C            | 10/14/21                | 020            |
| Total Fluoride         | 1.1           | 0.48       | mg/L         | 1.6  | 5.0 | J                     | EPA 300.0                 | 10/14/21                | 020            |
| Total Chloride         | 10.7          | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Sulfate          | 139           | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Boron            | 425           | 17.3       | ug/L         | 40.0 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Total Calcium          | 18500         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Calcium      | 20100         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Chloride     | 11.9          | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Magnesium    | 12800         | 182        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sodium       | 80500         | 350        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sulfate      | 140           | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Potassium    | 2650          | 325        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |

Sample Comments:

Sample Description: 101221007 P4 Landfill CCR Well Sample

Sample ID: AE56415 Sample Collection Date/Time: 10/12/2021 11:46
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Parameter</u>       | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | DIL | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|---------------|------------|--------------|------|-----|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 15.23         | 0.05       | feet         |      | 1.0 |                       | H2OD                      | 10/12/21                | NATE DUDA      |
| Field Temperature      | 11.1          | 0.1        | Degrees C    |      | 1.0 |                       | TEMP                      | 10/12/21                | NATE DUDA      |
| Field Conductivity     | 288           | 0          | umhos        |      | 1.0 |                       | FCOND25                   | 10/12/21                | NATE DUDA      |
| Field pH               | 8.2           | 0.1        | Units        | 0.1  | 1.0 |                       | FIELDPH                   | 10/12/21                | NATE DUDA      |
| Total Dissolved Solids | 190           | 20         | mg/L         | 8.7  | 1.0 | 20.0                  | Std Mtd 2540 C            | 10/14/21                | 020            |
| Total Fluoride         | 1.4           | 0.095      | mg/L         | 0.32 | 1.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Chloride         | 8.0           | 0.43       | mg/L         | 2.0  | 1.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Sulfate          | 17.4          | 0.44       | mg/L         | 2.0  | 1.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Boron            | 644           | 17.3       | ug/L         | 40.0 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Total Calcium          | 11800         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Calcium      | 12200         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Chloride     | 8.8           | 0.43       | mg/L         | 2.0  | 1.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Magnesium    | 4780          | 182        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sodium       | 48200         | 350        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sulfate      | 19.4          | 0.44       | mg/L         | 2.0  | 1.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Potassium    | 1220          | 325        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |

Sample Comments:

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 101221008 P4 Landfill CCR Well Sample

Sample ID: AE56416 Sample Collection Date/Time: 10/12/2021 12:23
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|                        |        |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | <u>Method</u>  | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 22.93  | 0.05       | feet         |            | 1.0        |             | H2OD           | 10/12/21    | NATE DUDA      |
| Field Temperature      | 12.0   | 0.1        | Degrees C    |            | 1.0        |             | TEMP           | 10/12/21    | NATE DUDA      |
| Field Conductivity     | 598    | 0          | umhos        |            | 1.0        |             | FCOND25        | 10/12/21    | NATE DUDA      |
| Field pH               | 7.6    | 0.1        | Units        | 0.1        | 1.0        |             | FIELDPH        | 10/12/21    | NATE DUDA      |
| Total Dissolved Solids | 362    | 8.7        | mg/L         | 20.0       | 1.0        |             | Std Mtd 2540 C | 10/14/21    | 020            |
| Total Fluoride         | 1.0    | 0.48       | mg/L         | 1.6        | 5.0        | J           | EPA 300.0      | 10/14/21    | 020            |
| Total Chloride         | 8.0    | 2.2        | mg/L         | 10.0       | 5.0        | J           | EPA 300.0      | 10/14/21    | 020            |
| Total Sulfate          | 123    | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Boron            | 396    | 86.6       | ug/L         | 200        | 5.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Total Calcium          | 25500  | 568        | ug/L         | 2500       | 5.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Calcium      | 26300  | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Chloride     | 10.1   | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Magnesium    | 14000  | 182        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sodium       | 82600  | 350        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sulfate      | 138    | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Potassium    | 2720   | 325        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
|                        |        |            |              |            |            |             |                |             |                |

Sample Comments:

Sample Description: 101221009 P4 Landfill CCR Well Sample

Sample ID: AE56417 Sample Collection Date/Time: 10/12/2021 13:03
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Parameter</u>       | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | DIL | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|---------------|------------|--------------|------|-----|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 26.25         | 0.05       | feet         |      | 1.0 |                       | H2OD                      | 10/12/21                | NATE DUDA      |
| Field Temperature      | 13.1          | 0.1        | Degrees C    |      | 1.0 |                       | TEMP                      | 10/12/21                | NATE DUDA      |
| Field Conductivity     | 526           | 0          | umhos        |      | 1.0 |                       | FCOND25                   | 10/12/21                | NATE DUDA      |
| Field pH               | 8.1           | 0.1        | Units        | 0.1  | 1.0 |                       | FIELDPH                   | 10/12/21                | NATE DUDA      |
| Total Dissolved Solids | 322           | 8.7        | mg/L         | 20.0 | 1.0 |                       | Std Mtd 2540 C            | 10/14/21                | 020            |
| Total Fluoride         | 0.89          | 0.48       | mg/L         | 1.6  | 5.0 | J                     | EPA 300.0                 | 10/14/21                | 020            |
| Total Chloride         | 12.4          | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Sulfate          | 116           | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Total Boron            | 439           | 17.3       | ug/L         | 40.0 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Total Calcium          | 18800         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Calcium      | 19600         | 114        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Chloride     | 12.3          | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Magnesium    | 12600         | 182        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sodium       | 74700         | 350        | ug/L         | 500  | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |
| Dissolved Sulfate      | 130           | 2.2        | mg/L         | 10.0 | 5.0 |                       | EPA 300.0                 | 10/14/21                | 020            |
| Dissolved Potassium    | 1790          | 325        | ug/L         | 1000 | 1.0 |                       | EPA 200.7                 | 10/14/21                | 020            |

The following are the analytical results for samples received by Laboratory Services:

### Sample Comments:

| Sample Description: | 101221010 | P4 Landfill CCR | Wall Sample  |
|---------------------|-----------|-----------------|--------------|
| Sample Describtion: | 101221010 | P4 Landilli CCK | . wen Samble |

Sample Description: 101221010 P4 Landin CCR Weil Sample
Sample ID: AE56418 Sample Collection Date/Time: 10/12/2021 13:31
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

|                        |           |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|-----------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result    | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | <b>Method</b>  | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 3.81      | 0.05       | feet         |            | 1.0        |             | H2OD           | 10/12/21    | NATE DUDA      |
| Field Temperature      | 11.6      | 0.1        | Degrees C    |            | 1.0        |             | TEMP           | 10/12/21    | NATE DUDA      |
| Field Conductivity     | 999       | 0          | umhos        |            | 1.0        |             | FCOND25        | 10/12/21    | NATE DUDA      |
| Field pH               | 7.4       | 0.1        | Units        | 0.1        | 1.0        |             | FIELDPH        | 10/12/21    | NATE DUDA      |
| Total Dissolved Solids | 592       | 8.7        | mg/L         | 20.0       | 1.0        |             | Std Mtd 2540 C | 10/14/21    | 020            |
| Total Fluoride         | Less Than | 0.48       | mg/L         | 1.6        | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Chloride         | 66.9      | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Sulfate          | 130       | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Total Boron            | 80.6      | 17.3       | ug/L         | 40.0       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Total Calcium          | 104000    | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Calcium      | 112000    | 114        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Chloride     | 71.9      | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Magnesium    | 67100     | 182        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sodium       | 15800     | 350        | ug/L         | 500        | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
| Dissolved Sulfate      | 144       | 2.2        | mg/L         | 10.0       | 5.0        |             | EPA 300.0      | 10/14/21    | 020            |
| Dissolved Potassium    | 1880      | 325        | ug/L         | 1000       | 1.0        |             | EPA 200.7      | 10/14/21    | 020            |
|                        |           |            |              |            |            |             |                |             |                |

Sample Comments:

Sample Description: 101221011 P4 Landfill CCR Well Sample

Sample ID: AE56419 Sample Collection Date/Time: 10/12/2021 14:00
Sample Received: 10/13/2021 Sample Collector: N. DUDA / L. ALBRIGHT

| <u>Result</u> | <u>LOD</u>                                                                                                                                 | <u>Units</u>                                                                                                                                                         | <u>LOQ</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result<br><u>Flag</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysis<br><u>Method</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis<br><u>Date</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Analyst</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.8          | 0.1                                                                                                                                        | Degrees C                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NATE DUDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 19.6          | 0                                                                                                                                          | umhos                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCOND25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NATE DUDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8.2           | 0.1                                                                                                                                        | Units                                                                                                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FIELDPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/12/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NATE DUDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14.0          | 8.7                                                                                                                                        | mg/L                                                                                                                                                                 | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Std Mtd 2540 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 0.095                                                                                                                                      | mg/L                                                                                                                                                                 | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 0.43                                                                                                                                       | mg/L                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 0.44                                                                                                                                       | mg/L                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 17.3                                                                                                                                       | ug/L                                                                                                                                                                 | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 114                                                                                                                                        | ug/L                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 114                                                                                                                                        | ug/L                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 0.43                                                                                                                                       | mg/L                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 182                                                                                                                                        | ug/L                                                                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 350                                                                                                                                        | ug/L                                                                                                                                                                 | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 0.44                                                                                                                                       | mg/L                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Less Than     | 325                                                                                                                                        | ug/L                                                                                                                                                                 | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 200.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10/14/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               | 18.8 19.6 8.2 14.0 Less Than | 18.8 0.1 19.6 0 8.2 0.1 14.0 8.7 Less Than 0.095 Less Than 0.43 Less Than 17.3 Less Than 114 Less Than 114 Less Than 0.43 Less Than 182 Less Than 182 Less Than 0.44 | 18.8       0.1       Degrees C         19.6       0       umhos         8.2       0.1       Units         14.0       8.7       mg/L         Less Than       0.095       mg/L         Less Than       0.43       mg/L         Less Than       17.3       ug/L         Less Than       114       ug/L         Less Than       114       ug/L         Less Than       0.43       mg/L         Less Than       182       ug/L         Less Than       350       ug/L         Less Than       0.44       mg/L | 18.8       0.1       Degrees C         19.6       0       umhos         8.2       0.1       Units       0.1         14.0       8.7       mg/L       20.0         Less Than       0.095       mg/L       0.32         Less Than       0.43       mg/L       2.0         Less Than       17.3       ug/L       40.0         Less Than       114       ug/L       500         Less Than       114       ug/L       500         Less Than       0.43       mg/L       2.0         Less Than       182       ug/L       1000         Less Than       350       ug/L       500         Less Than       0.44       mg/L       2.0 | 18.8       0.1       Degrees C       1.0         19.6       0       umhos       1.0         8.2       0.1       Units       0.1       1.0         14.0       8.7       mg/L       20.0       1.0         Less Than       0.095       mg/L       0.32       1.0         Less Than       0.43       mg/L       2.0       1.0         Less Than       17.3       ug/L       40.0       1.0         Less Than       114       ug/L       500       1.0         Less Than       114       ug/L       500       1.0         Less Than       0.43       mg/L       2.0       1.0         Less Than       182       ug/L       1000       1.0         Less Than       350       ug/L       500       1.0         Less Than       0.44       mg/L       2.0       1.0 | Result         LOD         Units         LOQ         DIL         Flag           18.8         0.1         Degrees C         1.0           19.6         0         umhos         1.0           8.2         0.1         Units         0.1         1.0           14.0         8.7         mg/L         20.0         1.0         J           Less Than         0.095         mg/L         0.32         1.0         J           Less Than         0.43         mg/L         2.0         1.0         J           Less Than         17.3         ug/L         40.0         1.0         J         J           Less Than         114         ug/L         500         1.0         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J         J | Result         LOD         Units         LOQ         DIL         Flag         Method           18.8         0.1         Degrees C         1.0         TEMP           19.6         0         umhos         1.0         FCOND25           8.2         0.1         Units         0.1         1.0         FIELDPH           14.0         8.7         mg/L         20.0         1.0         J         Std Mtd 2540 C           Less Than         0.095         mg/L         0.32         1.0         EPA 300.0           Less Than         0.43         mg/L         2.0         1.0         EPA 300.0           Less Than         17.3         ug/L         40.0         1.0         EPA 200.7           Less Than         114         ug/L         500         1.0         EPA 200.7           Less Than         0.43         mg/L         2.0         1.0         EPA 200.7           Less Than         182         ug/L         1000         1.0         EPA 200.7           Less Than         350         ug/L         500         1.0         EPA 200.7           Less Than         0.44         mg/L         2.0         1.0         EPA 200.7 <t< td=""><td>Result         LOD         Units         LOQ         DIL         Flag         Method         Date           18.8         0.1         Degrees C         1.0         TEMP         10/12/21           19.6         0         umhos         1.0         FCOND25         10/12/21           8.2         0.1         Units         0.1         1.0         FIELDPH         10/12/21           14.0         8.7         mg/L         20.0         1.0         J         Std Mtd 2540 C         10/14/21           Less Than         0.095         mg/L         0.32         1.0         EPA 300.0         10/14/21           Less Than         0.43         mg/L         2.0         1.0         EPA 300.0         10/14/21           Less Than         17.3         ug/L         40.0         1.0         EPA 200.7         10/14/21           Less Than         114         ug/L         500         1.0         EPA 200.7         10/14/21           Less Than         0.43         mg/L         2.0         1.0         EPA 200.7         10/14/21           Less Than         114         ug/L         500         1.0         EPA 200.7         10/14/21           Less Than</td></t<> | Result         LOD         Units         LOQ         DIL         Flag         Method         Date           18.8         0.1         Degrees C         1.0         TEMP         10/12/21           19.6         0         umhos         1.0         FCOND25         10/12/21           8.2         0.1         Units         0.1         1.0         FIELDPH         10/12/21           14.0         8.7         mg/L         20.0         1.0         J         Std Mtd 2540 C         10/14/21           Less Than         0.095         mg/L         0.32         1.0         EPA 300.0         10/14/21           Less Than         0.43         mg/L         2.0         1.0         EPA 300.0         10/14/21           Less Than         17.3         ug/L         40.0         1.0         EPA 200.7         10/14/21           Less Than         114         ug/L         500         1.0         EPA 200.7         10/14/21           Less Than         0.43         mg/L         2.0         1.0         EPA 200.7         10/14/21           Less Than         114         ug/L         500         1.0         EPA 200.7         10/14/21           Less Than |

The following are the analytical results for samples received by Laboratory Services:

Sample Comments:

LOD and LOQ are adjusted for dilution factor.

'J' Flag, if present indicates an estimated concentration at or above the LOD and below the LOQ.

If there are any questions concerning this report, please contact: Patrick Ahrens at (414) 221-2835.

To: Eric Kovatch

PSB Annex A231

From: WEC Business Services

Laboratory Services PSBA-A070 WDNR Cert # 241329000

Report Date: Tuesday, May 17, 2022

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 041322001 P4 Landfill CCR Well Sample

Sample ID: AE60059 Sample Collection Date/Time: 04/13/2022 08:55 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| Parameter              | Result    | <u>LOD</u> | Units   | LOQ  | DIL | Result<br><u>Flag</u> | Analysis<br>Method | Analysis<br><u>Date</u> | Analyst    |
|------------------------|-----------|------------|---------|------|-----|-----------------------|--------------------|-------------------------|------------|
| 1 at ameter            |           |            |         |      |     |                       |                    |                         |            |
| Field Water Level      | 17.27     | 0.05       | feet    |      | 1   |                       | H2OD               | 4/13/22                 | L ALBRIGHT |
| Field Temperature      | 11        | 0.1        | Degrees |      | 1   |                       | TEMP               | 4/13/22                 | L ALBRIGHT |
| Field Conductivity     | 523       | 0          | umhos   |      | 1   |                       | FCOND25            | 4/13/22                 | L ALBRIGHT |
| Field pH               | 7.5       | 0.1        | Units   | 0.1  | 1   |                       | FIELDPH            | 4/13/22                 | L ALBRIGHT |
| Total Fluoride         | Less Than | 0.095      | mg/L    | 0.32 | 1   |                       | EPA 300.0          | 4/14/22                 | 020        |
| Total Chloride         | 8.7       | 0.43       | mg/L    | 2.0  | 1   |                       | EPA 300.0          | 4/14/22                 | 020        |
| Total Sulfate          | 140       | 4.4        | mg/L    | 20.0 | 10  |                       | EPA 300.0          | 4/14/22                 | 020        |
| Total Boron            | 403       | 3.0        | ug/L    | 10.0 | 1   |                       | EPA 200.7          | 4/15/22                 | 020        |
| Total Calcium          | 26400     | 76.2       | ug/L    | 254  | 1   |                       | EPA 200.7          | 4/15/22                 | 020        |
| Total Dissolved Solids | 348       | 8.7        | mg/L    | 20.0 | 1   |                       | Std Mtd 2540 C     | 4/13/22                 | 020        |
|                        |           |            |         |      |     |                       |                    |                         |            |

Sample Comments:

Sample Description: 041322002 P4 Landfill CCR Well Sample

Sample ID: AE60060 Sample Collection Date/Time: 04/13/2022 09:45 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                        | <b>.</b> |            | <b>T</b> T •. |      | DII        | Result      | Analysis       | Analysis    |                |
|------------------------|----------|------------|---------------|------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result   | <u>LOD</u> | <u>Units</u>  | LOQ  | <u>DIL</u> | <u>Flag</u> | Method         | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 21.65    | 0.05       | feet          |      | 1          |             | H2OD           | 4/13/22     | L ALBRIGHT     |
| Field Temperature      | 11       | 0.1        | Degrees       |      | 1          |             | TEMP           | 4/13/22     | L ALBRIGHT     |
| Field Conductivity     | 533      | 0          | umhos         |      | 1          |             | FCOND25        | 4/13/22     | L ALBRIGHT     |
| Field pH               | 8.2      | 0.1        | Units         | 0.1  | 1          |             | FIELDPH        | 4/13/22     | L ALBRIGHT     |
| Total Fluoride         | 1.0      | 0.095      | mg/L          | 0.32 | 1          |             | EPA 300.0      | 4/14/22     | 020            |
| Total Chloride         | 11.0     | 0.43       | mg/L          | 2.0  | 1          |             | EPA 300.0      | 4/14/22     | 020            |
| Total Sulfate          | 131      | 4.4        | mg/L          | 20.0 | 10         |             | EPA 300.0      | 4/14/22     | 020            |
| Total Boron            | 431      | 3.0        | ug/L          | 10.0 | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Calcium          | 28000    | 76.2       | ug/L          | 254  | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Dissolved Solids | 344      | 8.7        | mg/L          | 20.0 | 1          |             | Std Mtd 2540 C | 4/13/22     | 020            |

Sample Comments:

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 041322003 P4 Landfill CCR Well Sample

Sample ID: AE60061 Sample Collection Date/Time: 04/13/2022 10:39 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| ţ    |
|------|
| IGHT |
| IGHT |
| IGHT |
| IGHT |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

Sample Comments:

Sample Description: 041322004 P4 Landfill CCR Well Sample

Sample ID: AE60062 Sample Collection Date/Time: 04/13/2022 11:28 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| <u>Parameter</u>       | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|---------------|------------|--------------|------|------------|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 22.88         | 0.05       | feet         |      | 1          |                       | H2OD                      | 4/13/22                 | L ALBRIGHT     |
| Field Temperature      | 11            | 0.1        | Degrees      | 3    | 1          |                       | TEMP                      | 4/13/22                 | L ALBRIGHT     |
| Field Conductivity     | 511           | 0          | umhos        |      | 1          |                       | FCOND25                   | 4/13/22                 | L ALBRIGHT     |
| Field pH               | 8.3           | 0.1        | Units        | 0.1  | 1          |                       | FIELDPH                   | 4/13/22                 | L ALBRIGHT     |
| Total Fluoride         | 1.1           | 0.095      | mg/L         | 0.32 | 1          |                       | EPA 300.0                 | 4/14/22                 | 020            |
| Total Chloride         | 10.4          | 0.43       | mg/L         | 2.0  | 1          |                       | EPA 300.0                 | 4/14/22                 | 020            |
| Total Sulfate          | 139           | 4.4        | mg/L         | 20.0 | 10         |                       | EPA 300.0                 | 4/14/22                 | 020            |
| Total Boron            | 415           | 3.0        | ug/L         | 10.0 | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Calcium          | 18300         | 76.2       | ug/L         | 254  | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Dissolved Solids | 330           | 8.7        | mg/L         | 20.0 | 1          |                       | Std Mtd 2540 C            | 4/13/22                 | 020            |

Sample Comments:

Sample Description: 041322005 P4 Landfill CCR Well Sample

Sample ID: AE60063 Sample Collection Date/Time: 04/13/2022 12:01 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                    |               |            |              |      |            | Result      | Analysis  | Analysis    |                |
|--------------------|---------------|------------|--------------|------|------------|-------------|-----------|-------------|----------------|
| <u>Parameter</u>   | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | <u>Flag</u> | Method    | <b>Date</b> | <u>Analyst</u> |
| Field Water Level  | 21.31         | 0.05       | feet         |      | 1          |             | H2OD      | 4/13/22     | L ALBRIGHT     |
| Field Temperature  | 11            | 0.1        | Degrees      |      | 1          |             | TEMP      | 4/13/22     | L ALBRIGHT     |
| Field Conductivity | 540           | 0          | umhos        |      | 1          |             | FCOND25   | 4/13/22     | L ALBRIGHT     |
| Field pH           | 8.1           | 0.1        | Units        | 0.1  | 1          |             | FIELDPH   | 4/13/22     | L ALBRIGHT     |
| Total Fluoride     | 1.2           | 0.095      | mg/L         | 0.32 | 1          |             | EPA 300.0 | 4/15/22     | 020            |
| Total Chloride     | 8.7           | 0.43       | mg/L         | 2.0  | 1          |             | EPA 300.0 | 4/15/22     | 020            |

The following are the analytical results for samples received by Laboratory Services:

| Sample Description: | 041322005 P4 Landfill | CCR Well Sample |
|---------------------|-----------------------|-----------------|
| Sample Describtion. | V41344VV3 F4 Lanuini  | CCK Well Sample |

Sample ID: AE60063 Sample Collection Date/Time: 04/13/2022 12:01 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                        |        |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | <b>LOQ</b> | <u>DIL</u> | <u>Flag</u> | Method         | <u>Date</u> | <b>Analyst</b> |
| Total Sulfate          | 135    | 4.4        | mg/L         | 20.0       | 10         |             | EPA 300.0      | 4/15/22     | 020            |
| Total Boron            | 427    | 3.0        | ug/L         | 10.0       | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Calcium          | 21000  | 76.2       | ug/L         | 254        | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Dissolved Solids | 320    | 8.7        | mg/L         | 20.0       | 1          |             | Std Mtd 2540 C | 4/13/22     | 020            |

Sample Comments:

Sample Description: 041322006 P4 Landfill CCR Well Sample

Sample ID: AE60064 Sample Collection Date/Time: 04/13/2022 12:33 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|--------|------------|--------------|------|------------|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 18.59  | 0.05       | feet         |      | 1          |                       | H2OD                      | 4/13/22                 | L ALBRIGHT     |
| Field Temperature      | 11     | 0.1        | Degrees      |      | 1          |                       | TEMP                      | 4/13/22                 | L ALBRIGHT     |
| Field Conductivity     | 591    | 0          | umhos        |      | 1          |                       | FCOND25                   | 4/13/22                 | L ALBRIGHT     |
| Field pH               | 8.0    | 0.1        | Units        | 0.1  | 1          |                       | FIELDPH                   | 4/13/22                 | L ALBRIGHT     |
| Total Fluoride         | 1.2    | 0.095      | mg/L         | 0.32 | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Chloride         | 12.7   | 0.43       | mg/L         | 2.0  | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Sulfate          | 164    | 4.4        | mg/L         | 20.0 | 10         |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Boron            | 381    | 3.0        | ug/L         | 10.0 | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Calcium          | 19300  | 76.2       | ug/L         | 254  | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Dissolved Solids | 352    | 8.7        | mg/L         | 20.0 | 1          |                       | Std Mtd 2540 C            | 4/13/22                 | 020            |
|                        |        |            |              |      |            |                       |                           |                         |                |

Sample Comments:

Sample Description: 041322007 P4 Landfill CCR Well Sample

Sample ID: AE60065 Sample Collection Date/Time: 04/13/2022 13:07 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| <u>Parameter</u>       | <u>Result</u> | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|---------------|------------|--------------|------|------------|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 5.17          | 0.05       | feet         |      | 1          |                       | H2OD                      | 4/13/22                 | L ALBRIGHT     |
| Field Temperature      | 11            | 0.1        | Degrees      |      | 1          |                       | TEMP                      | 4/13/22                 | L ALBRIGHT     |
| Field Conductivity     | 709           | 0          | umhos        |      | 1          |                       | FCOND25                   | 4/13/22                 | L ALBRIGHT     |
| Field pH               | 7.5           | 0.1        | Units        | 0.1  | 1          |                       | FIELDPH                   | 4/13/22                 | L ALBRIGHT     |
| Total Fluoride         | 0.89          | 0.095      | mg/L         | 0.32 | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Chloride         | 15.0          | 0.43       | mg/L         | 2.0  | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Sulfate          | 97.8          | 2.2        | mg/L         | 10.0 | 5          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Boron            | 300           | 3.0        | ug/L         | 10.0 | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Calcium          | 57200         | 76.2       | ug/L         | 254  | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Dissolved Solids | 388           | 8.7        | mg/L         | 20.0 | 1          |                       | Std Mtd 2540 C            | 4/13/22                 | 020            |

The following are the analytical results for samples received by Laboratory Services:

### Sample Comments:

| Sample Description: | 041322008 P4 Landfill CCR Well Sample |
|---------------------|---------------------------------------|
| Sample Description. | 041322000 F4 Lanum CCK Wen Sample     |

Sample ID: AE60066 Sample Collection Date/Time: 04/13/2022 13:55 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | Result<br><u>Flag</u> | Analysis<br><u>Method</u> | Analysis<br><u>Date</u> | <u>Analyst</u> |
|------------------------|--------|------------|--------------|------|------------|-----------------------|---------------------------|-------------------------|----------------|
| Field Water Level      | 17.38  | 0.05       | feet         |      | 1          |                       | H2OD                      | 4/13/22                 | L ALBRIGHT     |
| Field Temperature      | 12     | 0.1        | Degrees      |      | 1          |                       | TEMP                      | 4/13/22                 | L ALBRIGHT     |
| Field Conductivity     | 629    | 0          | umhos        |      | 1          |                       | FCOND25                   | 4/13/22                 | L ALBRIGHT     |
| Field pH               | 7.8    | 0.1        | Units        | 0.1  | 1          |                       | FIELDPH                   | 4/13/22                 | L ALBRIGHT     |
| Total Fluoride         | 1.2    | 0.095      | mg/L         | 0.32 | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Chloride         | 10.8   | 0.43       | mg/L         | 2.0  | 1          |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Sulfate          | 181    | 4.4        | mg/L         | 20.0 | 10         |                       | EPA 300.0                 | 4/15/22                 | 020            |
| Total Boron            | 428    | 3.0        | ug/L         | 10.0 | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Calcium          | 25800  | 76.2       | ug/L         | 254  | 1          |                       | EPA 200.7                 | 4/15/22                 | 020            |
| Total Dissolved Solids | 366    | 8.7        | mg/L         | 20.0 | 1          |                       | Std Mtd 2540 C            | 4/13/22                 | 020            |
|                        |        |            |              |      |            |                       |                           |                         |                |

Sample Comments:

Sample Description: 041322009 P4 Landfill CCR Well Sample

Sample ID: AE60067 Sample Collection Date/Time: 04/13/2022 14:21 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                        |        |            |              |      |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | LOQ  | <u>DIL</u> | <u>Flag</u> | <b>Method</b>  | <u>Date</u> | <u>Analyst</u> |
| Field Water Level      | 1.64   | 0.05       | feet         |      | 1          |             | H2OD           | 4/13/22     | L ALBRIGHT     |
| Field Temperature      | 11     | 0.1        | Degrees      | 3    | 1          |             | TEMP           | 4/13/22     | L ALBRIGHT     |
| Field Conductivity     | 1012   | 0          | umhos        |      | 1          |             | FCOND25        | 4/13/22     | L ALBRIGHT     |
| Field pH               | 7.3    | 0.1        | Units        | 0.1  | 1          |             | FIELDPH        | 4/13/22     | L ALBRIGHT     |
| Total Fluoride         | 0.36   | 0.095      | mg/L         | 0.32 | 1          |             | EPA 300.0      | 4/15/22     | 020            |
| Total Chloride         | 67.9   | 4.3        | mg/L         | 20.0 | 10         |             | EPA 300.0      | 4/15/22     | 020            |
| Total Sulfate          | 139    | 4.4        | mg/L         | 20.0 | 10         |             | EPA 300.0      | 4/15/22     | 020            |
| Total Boron            | 86.3   | 3.0        | ug/L         | 10.0 | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Calcium          | 108000 | 76.2       | ug/L         | 254  | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Dissolved Solids | 584    | 8.7        | mg/L         | 20.0 | 1          |             | Std Mtd 2540 C | 4/13/22     | 020            |

Sample Comments:

Sample Description: 041322010 P4 Landfill CCR Well Sample

Sample ID: AE60068 Sample Collection Date/Time: 04/13/2022 14:26 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                  |        |            |              |            |            | Result      | Analysis  | Analysis    |                |
|------------------|--------|------------|--------------|------------|------------|-------------|-----------|-------------|----------------|
| <u>Parameter</u> | Result | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | Method    | <b>Date</b> | <u>Analyst</u> |
| Total Fluoride   | 0.36   | 0.095      | mg/L         | 0.32       | 1          |             | EPA 300.0 | 4/15/22     | 020            |

The following are the analytical results for samples received by Laboratory Services:

Sample Description: 041322010 P4 Landfill CCR Well Sample

Sample ID: AE60068 Sample Collection Date/Time: 04/13/2022 14:26 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                        |        |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <u>LOD</u> | <u>Units</u> | <u>LOQ</u> | <u>DIL</u> | <u>Flag</u> | Method         | <b>Date</b> | <u>Analyst</u> |
| Total Chloride         | 68.2   | 4.3        | mg/L         | 20.0       | 10         |             | EPA 300.0      | 4/15/22     | 020            |
| Total Sulfate          | 140    | 4.4        | mg/L         | 20.0       | 10         |             | EPA 300.0      | 4/15/22     | 020            |
| Total Boron            | 81.9   | 3.0        | ug/L         | 10.0       | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Calcium          | 103000 | 76.2       | ug/L         | 254        | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Dissolved Solids | 604    | 8.7        | mg/L         | 20.0       | 1          |             | Std Mtd 2540 C | 4/13/22     | 020            |

Sample Comments:

Sample Description: 041322011 P4 Landfill CCR Well Sample

Sample ID: AE60069 Sample Collection Date/Time: 04/13/2022 15:10 Sample Received: 04/14/2022 Sample Collector: LYDIA ALBRIGHT

|                        |           |            |              |            |            | Result      | Analysis       | Analysis    |                |
|------------------------|-----------|------------|--------------|------------|------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result    | <u>LOD</u> | <u>Units</u> | <b>LOQ</b> | <u>DIL</u> | <u>Flag</u> | <b>Method</b>  | <u>Date</u> | <u>Analyst</u> |
| Field Temperature      | 21        | 0.1        | Degrees      |            | 1          |             | TEMP           | 4/13/22     | L ALBRIGHT     |
| Field Conductivity     | 12        | 0          | umhos        |            | 1          |             | FCOND25        | 4/13/22     | L ALBRIGHT     |
| Field pH               | 7.8       | 0.1        | Units        | 0.1        | 1          |             | FIELDPH        | 4/13/22     | L ALBRIGHT     |
| Total Fluoride         | Less Than | 0.095      | mg/L         | 0.32       | 1          |             | EPA 300.0      | 4/15/22     | 020            |
| Total Chloride         | Less Than | 0.43       | mg/L         | 2.0        | 1          |             | EPA 300.0      | 4/15/22     | 020            |
| Total Sulfate          | Less Than | 0.44       | mg/L         | 2.0        | 1          |             | EPA 300.0      | 4/15/22     | 020            |
| Total Boron            | Less Than | 3.0        | ug/L         | 10.0       | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Calcium          | Less Than | 76.2       | ug/L         | 254        | 1          |             | EPA 200.7      | 4/15/22     | 020            |
| Total Dissolved Solids | Less Than | 8.7        | mg/L         | 20.0       | 1          |             | Std Mtd 2540 C | 4/13/22     | 020            |

Sample Comments:

If there are any questions concerning this report, please contact: Patrick Ahrens at (414) 221-2835.

LOD and LOQ are adjusted for dilution factor.

<sup>&#</sup>x27;J' Flag, if present indicates an estimated concentration at or above the LOD and below the LOQ.





April 28, 2022

Patrick Ahrens WEC Business Services, LLC. PO BOX 19800 700 NORTH ADAMS Green Bay, WI 543079004

RE: Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

#### Dear Patrick Ahrens:

Enclosed are the analytical results for sample(s) received by the laboratory on April 14, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

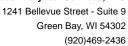
Sincerely,

Brian Basten

brian.basten@pacelabs.com

(920)469-2436

Project Manager


Enclosures

cc: Andrew Cawrse, Ramboll Americas Kevin Howard, We Energies

Dick Jackson, WE Energies

Ben Koshak, WEC Business Services, LLC. WE Energies Lab Reports, WE Energies







#### **CERTIFICATIONS**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

#### Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436



#### **SAMPLE SUMMARY**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

| Lab ID      | Sample ID           | Matrix | Date Collected | Date Received  |
|-------------|---------------------|--------|----------------|----------------|
| 40243469001 | 041322001 (AE60059) | Water  | 04/13/22 08:55 | 04/14/22 15:44 |
| 40243469002 | 041322002 (AE60060) | Water  | 04/13/22 09:45 | 04/14/22 15:44 |
| 40243469003 | 041322003 (AE60061) | Water  | 04/13/22 10:39 | 04/14/22 15:44 |
| 40243469004 | 041322004 (AE60062) | Water  | 04/13/22 11:28 | 04/14/22 15:44 |
| 40243469005 | 041322005 (AE60063) | Water  | 04/13/22 12:01 | 04/14/22 15:44 |
| 40243469006 | 041322006 (AE60064) | Water  | 04/13/22 12:33 | 04/14/22 15:44 |
| 40243469007 | 041322007 (AE60065) | Water  | 04/13/22 13:07 | 04/14/22 15:44 |
| 40243469008 | 041322008 (AE60066) | Water  | 04/13/22 13:55 | 04/14/22 15:44 |
| 40243469009 | 041322009 (AE60067) | Water  | 04/13/22 14:21 | 04/14/22 15:44 |
| 40243469010 | 041322010 (AE60068) | Water  | 04/13/22 14:26 | 04/14/22 15:44 |
| 40243469011 | 041322011 (AE60069) | Water  | 04/13/22 15:10 | 04/14/22 15:44 |



#### **SAMPLE ANALYTE COUNT**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

| Lab ID      | Sample ID           | Method    | Analysts | Analytes<br>Reported |  |
|-------------|---------------------|-----------|----------|----------------------|--|
| 40243469001 | 041322001 (AE60059) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469002 | 041322002 (AE60060) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469003 | 041322003 (AE60061) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469004 | 041322004 (AE60062) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469005 | 041322005 (AE60063) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469006 | 041322006 (AE60064) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469007 | 041322007 (AE60065) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469008 | 041322008 (AE60066) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469009 | 041322009 (AE60067) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469010 | 041322010 (AE60068) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | HMB      | 3                    |  |
| 40243469011 | 041322011 (AE60069) | EPA 200.8 | KXS      | 2                    |  |
|             |                     | SM 2540C  | SRK      | 1                    |  |
|             |                     | EPA 300.0 | НМВ      | 3                    |  |

PASI-G = Pace Analytical Services - Green Bay



Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Sample: 041322001 (AE60059)     | Lab ID:              | 40243469001                       | Collected           | : 04/13/22           | 08:55        | Received: 04                     | /14/22 15:44 Ma                                    | atrix: Water |                |
|---------------------------------|----------------------|-----------------------------------|---------------------|----------------------|--------------|----------------------------------|----------------------------------------------------|--------------|----------------|
| Parameters                      | Results              | Units                             | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual           |
| 200.8 MET ICPMS                 |                      | Method: EPA 2<br>ytical Services  |                     |                      | od: EP/      | A 200.8                          |                                                    |              |                |
| Boron<br>Calcium                | 403<br>26400         | ug/L<br>ug/L                      | 10.0<br>254         | 3.0<br>76.2          | 1<br>1       | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 07:30<br>04/27/22 07:30                   |              |                |
| 2540C Total Dissolved Solids    | •                    | Method: SM 25<br>ytical Services  |                     |                      |              |                                  |                                                    |              |                |
| Total Dissolved Solids          | 348                  | mg/L                              | 20.0                | 8.7                  | 1            |                                  | 04/18/22 13:25                                     |              |                |
| 300.0 IC Anions                 | •                    | Method: EPA 3<br>ytical Services  |                     |                      |              |                                  |                                                    |              |                |
| Chloride<br>Fluoride<br>Sulfate | 8.7<br><0.095<br>140 | mg/L<br>mg/L<br>mg/L              | 2.0<br>0.32<br>20.0 | 0.43<br>0.095<br>4.4 | 1<br>1<br>10 |                                  | 04/25/22 14:28<br>04/25/22 14:28<br>04/26/22 12:09 | 16984-48-8   | M0<br>M0<br>M0 |
| Sample: 041322002 (AE60060)     | Lab ID:              | 40243469002                       | Collected           | : 04/13/22           | 9 09:45      | Received: 04                     | /14/22 15:44 Ma                                    | atrix: Water |                |
| Parameters                      | Results              | Units                             | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual           |
| 200.8 MET ICPMS                 |                      | Method: EPA 2<br>lytical Services |                     |                      | od: EP/      | A 200.8                          |                                                    |              |                |
| Boron<br>Calcium                | 431<br>28000         | ug/L<br>ug/L                      | 10.0<br>254         | 3.0<br>76.2          | 1<br>1       | 04/15/22 06:11<br>04/15/22 06:11 |                                                    |              |                |
| 2540C Total Dissolved Solids    | •                    | Method: SM 25<br>ytical Services  |                     |                      |              |                                  |                                                    |              |                |
| Total Dissolved Solids          | 344                  | mg/L                              | 20.0                | 8.7                  | 1            |                                  | 04/18/22 13:26                                     |              |                |
| 300.0 IC Anions                 | •                    | Method: EPA 3<br>ytical Services  |                     |                      |              |                                  |                                                    |              |                |
| Chloride<br>Fluoride<br>Sulfate | 11.0<br>1.0<br>131   | mg/L<br>mg/L<br>mg/L              | 2.0<br>0.32<br>20.0 | 0.43<br>0.095<br>4.4 | 1<br>1<br>10 |                                  | 04/25/22 15:13<br>04/25/22 15:13<br>04/26/22 12:53 | 16984-48-8   |                |
| Sample: 041322003 (AE60061)     | Lab ID:              | 40243469003                       | Collected           | : 04/13/22           | 10:39        | Received: 04                     | /14/22 15:44 Ma                                    | atrix: Water |                |
| Parameters                      | Results              | Units                             | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual           |
| 200.8 MET ICPMS                 | •                    | Method: EPA 2<br>lytical Services | •                   |                      | od: EP       | A 200.8                          |                                                    |              |                |
| Boron<br>Calcium                | 608<br>11500         | ug/L<br>ug/L                      | 100<br>254          | 30.3<br>76.2         | 10<br>1      | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 01:29<br>04/27/22 03:56                   |              |                |

(920)469-2436



#### **ANALYTICAL RESULTS**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Sample: 041322003 (AE60061)     | Lab ID:            | 40243469003                       | Collected           | 04/13/22              | 2 10:39      | Received: 04/                    | 14/22 15:44 Ma                                     | atrix: Water |          |
|---------------------------------|--------------------|-----------------------------------|---------------------|-----------------------|--------------|----------------------------------|----------------------------------------------------|--------------|----------|
| Parameters                      | Results            | Units                             | LOQ                 | LOD                   | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual     |
| 2540C Total Dissolved Solids    | -                  | Method: SM 25<br>lytical Services |                     |                       |              |                                  |                                                    |              |          |
| Total Dissolved Solids          | 162                | mg/L                              | 20.0                | 8.7                   | 1            |                                  | 04/18/22 13:26                                     |              |          |
| 300.0 IC Anions                 | •                  | Method: EPA 3 ytical Services     |                     |                       |              |                                  |                                                    |              |          |
| Chloride<br>Fluoride<br>Sulfate | 8.0<br>1.3<br>17.9 | mg/L<br>mg/L<br>mg/L              | 2.0<br>0.32<br>2.0  | 0.43<br>0.095<br>0.44 | 1<br>1<br>1  |                                  | 04/25/22 15:28<br>04/25/22 15:28<br>04/25/22 15:28 | 16984-48-8   |          |
| Sample: 041322004 (AE60062)     | Lab ID:            | 40243469004                       | Collected           | 04/13/22              | 2 11:28      | Received: 04/                    | 14/22 15:44 Ma                                     | atrix: Water |          |
| Parameters                      | Results            | Units                             | LOQ                 | LOD                   | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual     |
| 200.8 MET ICPMS                 | -                  | Method: EPA 2<br>ytical Services  |                     | ation Meth            | od: EP       | A 200.8                          |                                                    |              |          |
| Boron<br>Calcium                | 415<br>18300       | ug/L<br>ug/L                      | 10.0<br>254         | 3.0<br>76.2           | 1<br>1       | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 07:45<br>04/27/22 07:45                   |              |          |
| 2540C Total Dissolved Solids    | •                  | Method: SM 25<br>ytical Services  |                     |                       |              |                                  |                                                    |              |          |
| Total Dissolved Solids          | 330                | mg/L                              | 20.0                | 8.7                   | 1            |                                  | 04/18/22 13:27                                     |              |          |
| 300.0 IC Anions                 | •                  | Method: EPA 3 ytical Services     |                     |                       |              |                                  |                                                    |              |          |
| Chloride<br>Fluoride<br>Sulfate | 10.4<br>1.1<br>139 | mg/L<br>mg/L<br>mg/L              | 2.0<br>0.32<br>20.0 | 0.43<br>0.095<br>4.4  | 1<br>1<br>10 |                                  | 04/26/22 12:05<br>04/26/22 12:05<br>04/27/22 04:30 | 16984-48-8   | M0<br>M0 |
| Sample: 041322005 (AE60063)     | Lab ID:            | 40243469005                       | Collected           | 04/13/22              | 2 12:01      | Received: 04/                    | 14/22 15:44 Ma                                     | atrix: Water |          |
| Parameters                      | Results            | Units                             | LOQ                 | LOD                   | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual     |
| 200.8 MET ICPMS                 | •                  | Method: EPA 2<br>lytical Services | •                   | ation Meth            | od: EP       | A 200.8                          |                                                    |              |          |
| Boron<br>Calcium                | 427<br>21000       | ug/L<br>ug/L                      | 10.0<br>254         | 3.0<br>76.2           | 1<br>1       | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 07:52<br>04/27/22 07:52                   |              |          |
| 2540C Total Dissolved Solids    | •                  | Method: SM 25<br>lytical Services |                     |                       |              |                                  |                                                    |              |          |
| Total Dissolved Solids          | 320                | mg/L                              | 20.0                | 8.7                   | 1            |                                  | 04/18/22 13:27                                     |              |          |



Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Sample: 041322005 (AE60063)     | Lab ID:            | 40243469005                      | Collected           | 04/13/22             | 2 12:01      | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
|---------------------------------|--------------------|----------------------------------|---------------------|----------------------|--------------|----------------------------------|----------------------------------------------------|--------------|------|
| Parameters                      | Results            | Units                            | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 300.0 IC Anions                 | ,                  | Method: EPA 3                    |                     |                      |              |                                  |                                                    |              |      |
| Chloride<br>Fluoride<br>Sulfate | 8.7<br>1.2<br>135  | mg/L<br>mg/L<br>mg/L             | 2.0<br>0.32<br>20.0 | 0.43<br>0.095<br>4.4 | 1<br>1<br>10 |                                  | 04/26/22 12:48<br>04/26/22 12:48<br>04/27/22 05:56 | 16984-48-8   |      |
| Sample: 041322006 (AE60064)     | Lab ID:            | 40243469006                      | Collected           | 04/13/22             | 2 12:33      | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
| Parameters                      | Results            | Units                            | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 200.8 MET ICPMS                 | -                  | Method: EPA 2                    |                     | ation Meth           | nod: EP      | A 200.8                          |                                                    |              |      |
| Boron<br>Calcium                | 381<br>19300       | ug/L<br>ug/L                     | 10.0<br>254         | 3.0<br>76.2          | 1<br>1       | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 07:59<br>04/27/22 07:59                   |              |      |
| 2540C Total Dissolved Solids    | •                  | Method: SM 25<br>ytical Services |                     |                      |              |                                  |                                                    |              |      |
| Total Dissolved Solids          | 352                | mg/L                             | 20.0                | 8.7                  | 1            |                                  | 04/18/22 13:27                                     |              |      |
| 300.0 IC Anions                 | -                  | Method: EPA 3                    |                     |                      |              |                                  |                                                    |              |      |
| Chloride<br>Fluoride<br>Sulfate | 12.7<br>1.2<br>164 | mg/L<br>mg/L<br>mg/L             | 2.0<br>0.32<br>20.0 | 0.43<br>0.095<br>4.4 | 1<br>1<br>10 |                                  | 04/26/22 13:03<br>04/26/22 13:03<br>04/27/22 06:11 | 16984-48-8   |      |
| Sample: 041322007 (AE60065)     | Lab ID:            | 40243469007                      | Collected           | 04/13/22             | 2 13:07      | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
| Parameters                      | Results            | Units                            | LOQ                 | LOD                  | DF           | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 200.8 MET ICPMS                 | -                  | Method: EPA 2                    | •                   | ation Meth           | nod: EP      | A 200.8                          |                                                    |              |      |
| Boron<br>Calcium                | 300<br>57200       | ug/L<br>ug/L                     | 10.0<br>254         | 3.0<br>76.2          | 1<br>1       |                                  | 04/27/22 08:07<br>04/27/22 08:07                   |              |      |
| 2540C Total Dissolved Solids    | -                  | Method: SM 25                    |                     |                      |              |                                  |                                                    |              |      |
| Total Dissolved Solids          | 388                | mg/L                             | 20.0                | 8.7                  | 1            |                                  | 04/18/22 13:28                                     |              |      |
| 300.0 IC Anions                 | -                  | Method: EPA 3                    |                     |                      |              |                                  |                                                    |              |      |
| Chloride<br>Fluoride            | 15.0<br>0.89       | mg/L<br>mg/L                     | 2.0<br>0.32         | 0.43<br>0.095        | 1<br>1       |                                  | 04/26/22 13:17<br>04/26/22 13:17                   |              |      |
| Sulfate                         | 97.8               | mg/L                             | 10.0                | 2.2                  | 5            |                                  | 04/27/22 06:25                                     | 14808-79-8   |      |

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Sample: 041322008 (AE60066)     | Lab ID:             | 40243469008                      | Collected            | : 04/13/22           | 13:55         | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
|---------------------------------|---------------------|----------------------------------|----------------------|----------------------|---------------|----------------------------------|----------------------------------------------------|--------------|------|
| Parameters                      | Results             | Units                            | LOQ                  | LOD                  | DF            | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 200.8 MET ICPMS                 | -                   | Method: EPA 2                    |                      |                      | od: EP        | A 200.8                          |                                                    |              |      |
| Boron<br>Calcium                | 428<br>25800        | ug/L<br>ug/L                     | 10.0<br>254          | 3.0<br>76.2          | 1<br>1        | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 16:06<br>04/27/22 16:06                   |              |      |
| 2540C Total Dissolved Solids    | -                   | Method: SM 25                    |                      |                      |               |                                  |                                                    |              |      |
| Total Dissolved Solids          | 366                 | mg/L                             | 20.0                 | 8.7                  | 1             |                                  | 04/18/22 13:28                                     |              |      |
| 300.0 IC Anions                 | •                   | Method: EPA 3                    |                      |                      |               |                                  |                                                    |              |      |
| Chloride<br>Fluoride<br>Sulfate | 10.8<br>1.2<br>181  | mg/L<br>mg/L<br>mg/L             | 2.0<br>0.32<br>20.0  | 0.43<br>0.095<br>4.4 | 1<br>1<br>10  |                                  | 04/26/22 13:32<br>04/26/22 13:32<br>04/27/22 06:39 | 16984-48-8   |      |
| Sample: 041322009 (AE60067)     | Lab ID:             | 40243469009                      | Collected            | : 04/13/22           | 2 14:21       | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
| Parameters                      | Results             | Units                            | LOQ                  | LOD                  | DF            | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 200.8 MET ICPMS                 | -                   | Method: EPA 2                    |                      |                      | od: EP        | A 200.8                          |                                                    |              |      |
| Boron<br>Calcium                | 86.3<br>108000      | ug/L<br>ug/L                     | 10.0<br>254          | 3.0<br>76.2          | 1<br>1        | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 16:13<br>04/27/22 16:13                   |              |      |
| 2540C Total Dissolved Solids    | •                   | Method: SM 25<br>ytical Services |                      |                      |               |                                  |                                                    |              |      |
| Total Dissolved Solids          | 584                 | mg/L                             | 20.0                 | 8.7                  | 1             |                                  | 04/18/22 13:28                                     |              |      |
| 300.0 IC Anions                 | •                   | Method: EPA 3<br>ytical Services |                      |                      |               |                                  |                                                    |              |      |
| Chloride<br>Fluoride<br>Sulfate | 67.9<br>0.36<br>139 | mg/L<br>mg/L<br>mg/L             | 20.0<br>0.32<br>20.0 | 4.3<br>0.095<br>4.4  | 10<br>1<br>10 |                                  | 04/27/22 06:54<br>04/26/22 13:46<br>04/27/22 06:54 | 16984-48-8   |      |
| Sample: 041322010 (AE60068)     | Lab ID:             | 40243469010                      | Collected            | : 04/13/22           | 2 14:26       | Received: 04/                    | /14/22 15:44 Ma                                    | atrix: Water |      |
| Parameters                      | Results             | Units                            | LOQ                  | LOD                  | DF            | Prepared                         | Analyzed                                           | CAS No.      | Qual |
| 200.8 MET ICPMS                 | •                   | Method: EPA 2<br>ytical Services | •                    |                      | od: EP        | A 200.8                          |                                                    |              |      |
| Boron<br>Calcium                | 81.9<br>103000      | ug/L<br>ug/L                     | 10.0<br>254          | 3.0<br>76.2          | 1<br>1        | 04/15/22 06:11<br>04/15/22 06:11 | 04/27/22 16:21<br>04/27/22 16:21                   |              |      |



Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Sample: 041322010 (AE60068)                                                                           | Lab ID:                                                                        | 40243469010                                                                                                   | Collected                                            | d: 04/13/22                                 | 14:26             | Received: 04/             | /14/22 15:44 Ma                                    | atrix: Water                         |      |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------|-------------------|---------------------------|----------------------------------------------------|--------------------------------------|------|
| Parameters                                                                                            | Results                                                                        | Units                                                                                                         | LOQ                                                  | LOD                                         | DF                | Prepared                  | Analyzed                                           | CAS No.                              | Qual |
| 2540C Total Dissolved Solids                                                                          | Analytical                                                                     | Method: SM 25                                                                                                 | 40C                                                  |                                             |                   |                           |                                                    |                                      |      |
|                                                                                                       | Pace Anal                                                                      | ytical Services                                                                                               | - Green Bay                                          | /                                           |                   |                           |                                                    |                                      |      |
| Total Dissolved Solids                                                                                | 604                                                                            | mg/L                                                                                                          | 20.0                                                 | 8.7                                         | 1                 |                           | 04/18/22 13:29                                     |                                      |      |
| 300.0 IC Anions                                                                                       | Analytical                                                                     | Method: EPA 3                                                                                                 | 0.00                                                 |                                             |                   |                           |                                                    |                                      |      |
|                                                                                                       | Pace Anal                                                                      | ytical Services                                                                                               | - Green Bay                                          | /                                           |                   |                           |                                                    |                                      |      |
| Chloride                                                                                              | 68.2                                                                           | mg/L                                                                                                          | 20.0                                                 | 4.3                                         | 10                |                           | 04/27/22 07:08                                     | 16887-00-6                           |      |
| Fluoride                                                                                              | 0.36                                                                           | mg/L                                                                                                          | 0.32                                                 | 0.095                                       | 1                 |                           | 04/26/22 14:43                                     | 16984-48-8                           |      |
| Sulfate                                                                                               | 140                                                                            | mg/L                                                                                                          | 20.0                                                 | 4.4                                         | 10                |                           | 04/27/22 07:08                                     | 14808-79-8                           |      |
| Sample: 041322011 (AE60069)                                                                           | Lab ID:                                                                        | 40243469011                                                                                                   | Collected                                            | d: 04/13/22                                 | 2 15:10           | Received: 04/             | /14/22 15:44 Ma                                    | atrix: Water                         |      |
|                                                                                                       |                                                                                |                                                                                                               |                                                      |                                             |                   |                           |                                                    |                                      |      |
| Parameters                                                                                            | Results                                                                        | Units                                                                                                         | LOQ                                                  | LOD                                         | DF                | Prepared                  | Analyzed                                           | CAS No.                              | Qual |
| Parameters 200.8 MET ICPMS                                                                            | Analytical                                                                     | Units  Method: EPA 2 ytical Services                                                                          | 00.8 Prepa                                           | ration Meth                                 |                   | ·                         | Analyzed                                           | CAS No.                              | Qual |
|                                                                                                       | Analytical                                                                     | Method: EPA 2                                                                                                 | 00.8 Prepa                                           | ration Meth                                 |                   | ·                         | Analyzed 04/27/22 16:28                            | <u> </u>                             | Qual |
| 200.8 MET ICPMS                                                                                       | Analytical Pace Anal                                                           | Method: EPA 2                                                                                                 | 00.8 Prepa<br>- Green Bay                            | ration Meth                                 | od: EP/           | A 200.8                   | 04/27/22 16:28                                     | 7440-42-8                            | Qual |
| 200.8 MET ICPMS Boron                                                                                 | Analytical Pace Anal <3.0 <76.2 Analytical                                     | Method: EPA 2<br>ytical Services<br>ug/L<br>ug/L<br>Method: SM 25                                             | 00.8 Prepa<br>- Green Bay<br>10.0<br>254             | ration Meth<br>/<br>3.0<br>76.2             | od: EP/           | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28                                     | 7440-42-8                            | Qual |
| 200.8 MET ICPMS  Boron Calcium                                                                        | Analytical Pace Anal <3.0 <76.2 Analytical                                     | Method: EPA 2<br>ytical Services<br>ug/L<br>ug/L                                                              | 00.8 Prepa<br>- Green Bay<br>10.0<br>254             | ration Meth<br>/<br>3.0<br>76.2             | od: EP/           | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28                                     | 7440-42-8                            | Qual |
| 200.8 MET ICPMS  Boron Calcium  2540C Total Dissolved Solids  Total Dissolved Solids                  | Analytical Pace Anal <3.0 <76.2 Analytical Pace Anal <8.7                      | Method: EPA 2<br>ytical Services<br>ug/L<br>ug/L<br>Method: SM 25<br>ytical Services<br>mg/L                  | 10.0<br>254<br>40C<br>- Green Bay<br>20.0            | ration Meth<br>/<br>3.0<br>76.2             | od: EP/<br>1<br>1 | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28<br>04/27/22 16:28                   | 7440-42-8                            | Qual |
| 200.8 MET ICPMS  Boron Calcium  2540C Total Dissolved Solids                                          | Analytical Pace Anal <3.0 <76.2  Analytical Pace Anal <8.7  Analytical         | Method: EPA 2<br>ytical Services<br>ug/L<br>ug/L<br>Method: SM 25<br>ytical Services                          | 10.0<br>254<br>40C<br>- Green Bay<br>20.0            | ration Meth<br>/<br>3.0<br>76.2<br>/<br>8.7 | od: EP/<br>1<br>1 | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28<br>04/27/22 16:28                   | 7440-42-8                            | Qual |
| 200.8 MET ICPMS  Boron Calcium  2540C Total Dissolved Solids  Total Dissolved Solids                  | Analytical Pace Anal <3.0 <76.2  Analytical Pace Anal <8.7  Analytical         | Method: EPA 2 ytical Services ug/L ug/L Method: SM 25 ytical Services mg/L Method: EPA 3 ytical Services      | 10.0<br>254<br>40C<br>- Green Bay<br>20.0            | ration Meth<br>/<br>3.0<br>76.2<br>/<br>8.7 | od: EP/<br>1<br>1 | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28<br>04/27/22 16:28                   | 7440-42-8<br>7440-70-2               | Qual |
| 200.8 MET ICPMS  Boron Calcium  2540C Total Dissolved Solids  Total Dissolved Solids  300.0 IC Anions | Analytical Pace Anal <3.0 <76.2 Analytical Pace Anal <8.7 Analytical Pace Anal | Method: EPA 2<br>ytical Services<br>ug/L<br>ug/L<br>Method: SM 25<br>ytical Services<br>mg/L<br>Method: EPA 3 | 10.0 Prepa<br>10.0 254<br>40C<br>- Green Bay<br>20.0 | 3.0<br>76.2                                 | od: EP/           | A 200.8<br>04/15/22 06:11 | 04/27/22 16:28<br>04/27/22 16:28<br>04/18/22 13:29 | 7440-42-8<br>7440-70-2<br>16887-00-6 | Qual |



#### **QUALITY CONTROL DATA**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

QC Batch: 413245 Analysis Method: EPA 200.8
QC Batch Method: EPA 200.8 Analysis Description: 200.8 MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243469001, 40243469002, 40243469003, 40243469004, 40243469005, 40243469006, 40243469007,

40243469008, 40243469009, 40243469010, 40243469011

METHOD BLANK: 2379591 Matrix: Water

Associated Lab Samples: 40243469001, 40243469002, 40243469003, 40243469004, 40243469005, 40243469006, 40243469007,

40243469008, 40243469009, 40243469010, 40243469011

Blank Reporting Parameter Qualifiers Units Result I imit Analyzed Boron ug/L < 3.0 10.0 04/27/22 00:44 04/27/22 00:44 Calcium ug/L <76.2 254

LABORATORY CONTROL SAMPLE: 2379592 LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Boron 235 94 85-115 ug/L 250 Calcium 10000 10300 103 ug/L 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2379593 2379594 MS MSD 40243384021 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Boron ug/L 650 250 250 934 877 113 91 75-125 6 20 Calcium ug/L 239000 10000 10000 263000 253000 242 141 75-125 4 20 P6

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2379595 2379596 MSD MS 40243469003 MSD MS MSD Spike Spike MS % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual 860 75-125 Boron ug/L 608 250 250 854 101 98 20 Calcium ug/L 11500 10000 10000 21500 21800 100 103 75-125 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436



#### **QUALITY CONTROL DATA**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

QC Batch: 413442 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243469001, 40243469002, 40243469003, 40243469004, 40243469005, 40243469006, 40243469007,

40243469008, 40243469009, 40243469010, 40243469011

METHOD BLANK: 2380766 Matrix: Water

Associated Lab Samples: 40243469001, 40243469002, 40243469003, 40243469004, 40243469005, 40243469006, 40243469007,

40243469008, 40243469009, 40243469010, 40243469011

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Dissolved Solids mg/L <8.7 20.0 04/18/22 13:23

LABORATORY CONTROL SAMPLE: 2380767

LCS LCS % Rec Spike Parameter Units Result % Rec Limits Qualifiers Conc. **Total Dissolved Solids** mg/L 555 538 97 80-120

SAMPLE DUPLICATE: 2380768

40243429001 Dup Max **RPD RPD** Parameter Units Result Result Qualifiers 580 588 10 **Total Dissolved Solids** 1 mg/L

SAMPLE DUPLICATE: 2380769

Date: 04/28/2022 04:00 PM

ParameterUnits40243469001 ResultDup ResultRPDMax RPDQualifiersTotal Dissolved Solidsmg/L348364410

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436



#### **QUALITY CONTROL DATA**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

QC Batch: 413946 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243469001, 40243469002, 40243469003

METHOD BLANK: 2383815 Matrix: Water

Associated Lab Samples: 40243469001, 40243469002, 40243469003

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed Chloride mg/L < 0.43 2.0 04/25/22 13:14 Fluoride mg/L < 0.095 0.32 04/25/22 13:14 Sulfate mg/L 04/25/22 13:14 < 0.44 2.0

LABORATORY CONTROL SAMPLE: 2383816

Date: 04/28/2022 04:00 PM

|           |       | Spike | LCS    | LCS   | % Rec  |            |
|-----------|-------|-------|--------|-------|--------|------------|
| Parameter | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Chloride  | mg/L  |       | 20.4   | 102   | 90-110 |            |
| Fluoride  | mg/L  | 2     | 1.8    | 90    | 90-110 |            |
| Sulfate   | mg/L  | 20    | 20.4   | 102   | 90-110 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPLI | CATE: 2383  | 817   |       | 2383818 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |           | 40243469001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L      | 8.7         | 20    | 20    | 30.8    | 30.8   | 111   | 111   | 90-110 | 0   | 15  | MO   |
| Fluoride                 | mg/L      | < 0.095     | 2     | 2     | 2.9     | 2.9    | 144   | 144   | 90-110 | 0   | 15  | M0   |
| Sulfate                  | mg/L      | 140         | 200   | 200   | 394     | 349    | 127   | 105   | 90-110 | 12  | 15  | MO   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

QC Batch: 414020 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40243469004, 40243469005, 40243469006, 40243469007, 40243469008, 40243469009, 40243469010,

40243469011

METHOD BLANK: 2384067 Matrix: Water

Associated Lab Samples: 40243469004, 40243469005, 40243469006, 40243469007, 40243469008, 40243469009, 40243469010,

40243469011

| Parameter | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------|-------|-----------------|--------------------|----------------|------------|
| Chloride  | mg/L  | <0.43           | 2.0                | 04/26/22 11:37 |            |
| Fluoride  | mg/L  | < 0.095         | 0.32               | 04/26/22 11:37 |            |
| Sulfate   | mg/L  | <0.44           | 2.0                | 04/26/22 11:37 |            |

| LABORATORY CONTROL SAMPLE: | 2384068 | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
| Damanatan                  | 11-26-  |       |        |       |        | 0          |
| Parameter                  | Units   | Conc  | Result | % Rec | Limits | Qualifiers |
| Chloride                   | mg/L    | 20    | 20.5   | 102   | 90-110 |            |
| Fluoride                   | mg/L    | 2     | 2.2    | 109   | 90-110 |            |
| Sulfate                    | mg/L    | 20    | 20.5   | 102   | 90-110 |            |

| MATRIX SPIKE & MATRIX SF | IKE DUPLIC | CATE: 2384 | 069   |       | 2384070 |        |       |       |        |     |     |      |
|--------------------------|------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |            |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          | 4          | 0243469004 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units      | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L       | 10.4       | 20    | 20    | 32.4    | 32.6   | 110   | 111   | 90-110 | 0   | 15  | MO   |
| Fluoride                 | mg/L       | 1.1        | 2     | 2     | 3.4     | 3.4    | 113   | 114   | 90-110 | 1   | 15  | M0   |
| Sulfate                  | mg/L       | 139        | 200   | 200   | 352     | 351    | 107   | 106   | 90-110 | 0   | 15  |      |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 2384 | 071   |       | 2384072 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 40243484003 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Chloride                 | mg/L     | 9620        | 10000 | 10000 | 20400   | 20500  | 108   | 109   | 90-110 | 1   | 15  |      |
| Fluoride                 | mg/L     | 74.4J       | 1000  | 1000  | 339     | 338    | 26    | 26    | 90-110 | 0   | 15  | M0   |
| Sulfate                  | mg/L     | 1610        | 10000 | 10000 | 12600   | 12700  | 110   | 111   | 90-110 | 1   | 15  | M0   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436



#### **QUALIFIERS**

Project: Q-6005-001031 PPPP CCR LANDFIL

Pace Project No.: 40243469

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

Date: 04/28/2022 04:00 PM

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.



#### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: Q-6005-001031 PPPP CCR LANDFIL

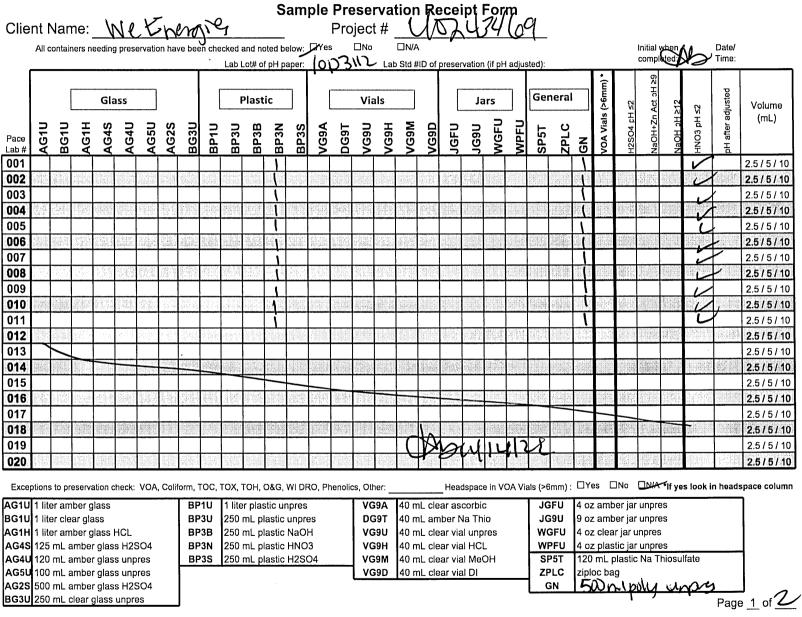
Pace Project No.: 40243469

Date: 04/28/2022 04:00 PM

| Lab ID      | Sample ID           | QC Batch Method | QC Batch | Analytical Method | Analytica<br>Batch |
|-------------|---------------------|-----------------|----------|-------------------|--------------------|
| 40243469001 | 041322001 (AE60059) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469002 | 041322002 (AE60060) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469003 | 041322003 (AE60061) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469004 | 041322004 (AE60062) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469005 | 041322005 (AE60063) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469006 | 041322006 (AE60064) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469007 | 041322007 (AE60065) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469008 | 041322008 (AE60066) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 10243469009 | 041322009 (AE60067) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469010 | 041322010 (AE60068) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 40243469011 | 041322011 (AE60069) | EPA 200.8       | 413245   | EPA 200.8         | 413411             |
| 10243469001 | 041322001 (AE60059) | SM 2540C        | 413442   |                   |                    |
| 10243469002 | 041322002 (AE60060) | SM 2540C        | 413442   |                   |                    |
| 10243469003 | 041322003 (AE60061) | SM 2540C        | 413442   |                   |                    |
| 10243469004 | 041322004 (AE60062) | SM 2540C        | 413442   |                   |                    |
| 10243469005 | 041322005 (AE60063) | SM 2540C        | 413442   |                   |                    |
| 10243469006 | 041322006 (AE60064) | SM 2540C        | 413442   |                   |                    |
| 10243469007 | 041322007 (AE60065) | SM 2540C        | 413442   |                   |                    |
| 10243469008 | 041322008 (AE60066) | SM 2540C        | 413442   |                   |                    |
| 10243469009 | 041322009 (AE60067) | SM 2540C        | 413442   |                   |                    |
| 40243469010 | 041322010 (AE60068) | SM 2540C        | 413442   |                   |                    |
| 40243469011 | 041322011 (AE60069) | SM 2540C        | 413442   |                   |                    |
| 40243469001 | 041322001 (AE60059) | EPA 300.0       | 413946   |                   |                    |
| 40243469002 | 041322002 (AE60060) | EPA 300.0       | 413946   |                   |                    |
| 40243469003 | 041322003 (AE60061) | EPA 300.0       | 413946   |                   |                    |
| 40243469004 | 041322004 (AE60062) | EPA 300.0       | 414020   |                   |                    |
| 10243469005 | 041322005 (AE60063) | EPA 300.0       | 414020   |                   |                    |
| 40243469006 | 041322006 (AE60064) | EPA 300.0       | 414020   |                   |                    |
| 40243469007 | 041322007 (AE60065) | EPA 300.0       | 414020   |                   |                    |
| 40243469008 | 041322008 (AE60066) | EPA 300.0       | 414020   |                   |                    |
| 40243469009 | 041322009 (AE60067) | EPA 300.0       | 414020   |                   |                    |
| 40243469010 | 041322010 (AE60068) | EPA 300.0       | 414020   |                   |                    |
| 40243469011 | 041322011 (AE60069) | EPA 300.0       | 414020   |                   |                    |

# **CHAIN-OF-CUSTODY / Analytical Request Document**

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.


Section A Section B Section C Required Client Information: Required Project Information: Invoice Information: Report To: Patrick Ahrens Attention: Company: We Energies Accounts Payable 333 W. Everett St. Address: Copy To: Company Name: We Energies REGULATORY AGENCY Milwaukee, WI 53203 Address: 333 W. Everett St., Milwaukee, WI 53 **NPDES** GROUND WATER x DRINKING WATER Purchase Order No.: 4700004930 Pace Ounte Email To: patrick.ahrens@wecenergygroup.com UST **RCRA** OTHER Reference Phone: 414-221-2835 PPPP CCR Landfill - April 2022 Samples Pace Project Fax: 414-221-4357 Brian Basten Site Location Manager: WI Requested Due Date/TAT: Pace Profile # Project Number: Q-6005-001031 STATE: Requested Analysis Filtered (Y/N) N /A Section D Valid Matrix Codes codes to left) C=COMP) COLLECTED Preservatives Ν Ν Required Client Information MATRIX CODE lΝl Ν N SAMPLE TEMP AT COLLECTION COMPOSITE WASTE WATER ww COMPOSITE END/GRAB FLOURIDE - Unfiltered - Unfiltered (G=GRAB START Residual Chlorine (Y/N) PRODUCT Unfiltered BORON - unfiltered CALCIUM - unfiltered SOIL/SOLID SL ees) OL WP AR OT OIL #Analysis Test CONTAINERS SAMPLE ID WIPE AIR MATRIX CODE (A-Z, 0-9 / ,-) OTHER SAMPLE TYPE Sample IDs MUST BE UNIQUE CHLORIDE SULFATE Methanol Na<sub>2</sub>S<sub>2</sub>( TEM # 0F DATE TIME TIME DATE Pace Project No./ Lab I.D. 041322001 (AE60059) WT G 1 2 0 Х つい 041322002 (AE60060) WT G 2 ふり 041322003 (AE60061) WT G 0 3 2 Х 041322004 (AE60062) WT G 0 2 041322005 (AE60063) WT G 5 0 х 041322006 (AE60064) 6 WT G 2 0 041322007 (AE60065) WT 7 G 2 0 041322008 (AE60066) WT G 8 0 041322009 (AE60067) WT G 0 2 041322010 (AE60068) WT G 10 2 0 O(D)041322011 (AE60069) wr l G 11 2 1 0 х Х 12 ADDITIONAL COMMENTS **RELINQUISHED BY / AFFILIATION** DATE TIME **ACCEPTED BY / AFFILIATION** DATE TIME SAMPLE CONDITIONS 4/14/22 0805 0805 Please analyze with method EPA 200.8 Samples Intact (Y/N) SAMPLER NAME AND SIGNATURE Seale (Y/N) Temp in °C Received or Ice (Y/N) PRINT Name of SAMPLER: Lvdia Albright Custody ( Cooler (

SIGNATURE of SAMPLER: Unavailable to sign

DATE Signed (MM/DD/YY):

DC# Title: ENV-FRM-GBAY-0035 v01 Sample Preservation Receipt Form

Revision: 3 | Effective Date: | Issued by: Green Bay



DC#\_Title: ENV-FRM-GBAY-0014 v02\_SCUR Revision: 3 | Effective Date: | Issued by: Green Bay

#### Sample Condition Upon Receipt Form (SCUR)

| 1110                                                                                          |                                       | Project #:                                 | 1460                              |
|-----------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------|-----------------------------------|
| Client Name: Neward                                                                           |                                       | WO#:40243                                  | 3469                              |
| Courier: CS Logistics Fed Ex Spee                                                             | edee 🔲 UPS 🔲 Waltco                   | BL M B 11 M B B 1 18 18 1 M 188 M          | I                                 |
| Client Pace Other:                                                                            |                                       |                                            |                                   |
| Tracking #:                                                                                   |                                       | 40243469                                   |                                   |
| Custody Seal on Cooler/Box Present: yes                                                       | no Seals intact: ye                   | s no                                       |                                   |
| Custody Seal on Samples Present: Dyes                                                         | · · · · · · · · · · · · · · · · · · · | es 🗌 no                                    |                                   |
| Packing Material:  Bubble Wrap  Bu                                                            | - / \                                 | Other                                      |                                   |
| Thermometer Used SR - US                                                                      | Type of Ice: Wet Blue                 |                                            | ess has begun<br>nining contents: |
| Cooler Temperature Uncorr: 2 /Corr:                                                           |                                       | is Frozen: ☐ yes ☐ no Date LA(U) 24        | /Initials:                        |
| Temp Blank Present: yes no                                                                    | Diological Hasac                      | Date: 4144 Date:                           | /initials: OF S                   |
| Temp should be above freezing to 6°C.<br>Biota Samples may be received at ≤ 0°C if shipped on | Dry Ice.                              | Labeled By Initi                           | als:                              |
| Chain of Custody Present:                                                                     | -□Yes □No □N/A 1.                     |                                            |                                   |
| Chain of Custody Filled Out:                                                                  | Yes No DNA 2. N                       | stimes, dates ON                           | 3413/22                           |
| Chain of Custody Relinquished:                                                                | □Yes □No □N/A 3.                      | , , ,                                      |                                   |
| Sampler Name & Signature on COC:                                                              | Yes 🗆 No 🗆 N/A 4.                     |                                            |                                   |
| Samples Arrived within Hold Time:                                                             | ✓Yes □No 5.                           |                                            |                                   |
| - VOA Samples frozen upon receipt                                                             | □Yes □No Date/T                       | ime:                                       |                                   |
| Short Hold Time Analysis (<72hr):                                                             | □Yes □No 6.                           |                                            | - 4                               |
| Rush Turn Around Time Requested:                                                              | □Yes ☑No 7.                           |                                            |                                   |
| Sufficient Volume:                                                                            | 8.                                    |                                            |                                   |
| For Analysis. ☐Yes ☐No MS/MS                                                                  | SD: DYes No DN/A                      |                                            |                                   |
| Correct Containers Used:                                                                      | √Yes □No 9.                           |                                            |                                   |
| -Pace Containers Used:                                                                        | ÆYes □No □N/A                         |                                            |                                   |
| -Pace IR Containers Used:                                                                     | □Yes □No □MA                          |                                            |                                   |
| Containers Intact:                                                                            | ✓Yes □No 10.                          |                                            |                                   |
| Filtered volume received for Dissolved tests                                                  | □Yes □No ☑N/A 11.                     |                                            |                                   |
| Sample Labels match COC:                                                                      | □Yes □No □N/A 12.                     | lates 4/13/22                              |                                   |
| -Includes date/time/ID/Analysis Matrix:                                                       | $\mathcal{N}$                         | 1:18:55 002:109:45" DA                     | bully 122                         |
| Trip Blank Present:                                                                           | □Yes □No □N⁄A 13.00                   | 03:"10:34",004:"\\:,28",005:               | "12:01",006:"                     |
| Trip Blank Custody Seals Present                                                              | □Yes □No □N/A ○○7                     | :"13:07",008;"\3:56",00a;"\L               | 121,016:114:2                     |
| Pace Trip Blank Lot # (if purchased):                                                         |                                       | "1510" 4/14/22 and                         | ,                                 |
| Client Notification/ Resolution:                                                              |                                       | If checked, see attached form for addition | onal comments                     |
| Person Contacted:                                                                             | Date/Time:                            |                                            |                                   |
| Comments/ Resolution:                                                                         |                                       |                                            |                                   |

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page Z of Z

| We Energies   aboratory Services Division                          |                                  |                   |                             | ANALYS      | ANALYSIS REQUESTED       |                           |                 |                                       |
|--------------------------------------------------------------------|----------------------------------|-------------------|-----------------------------|-------------|--------------------------|---------------------------|-----------------|---------------------------------------|
| Analysis Request Form/Chain of Custody Record                      |                                  |                   |                             |             |                          |                           |                 | Preservation Codes                    |
| Requestor:                                                         |                                  |                   |                             | ·           |                          |                           |                 | Vendor/Lot# of Preservative Used      |
| Company Phone:                                                     |                                  |                   | (+                          | (           | Þ                        |                           |                 | A = HNO3                              |
| Company Mail Code:                                                 |                                  |                   | ð)                          | ور          | Ų                        |                           |                 | B = HCL                               |
| Project Internal Order #:                                          | 7                                | الرافع            | , u                         | ) •         | <b>)</b>                 |                           |                 | C = H2SO4                             |
| Date Results Needed:                                               |                                  | <u> </u>          | 776                         | 9r          | <b>)</b> '               |                           |                 | D = NaOH                              |
| Notification Options: E-Mail Fax Mail Phone (Circle Preference)    |                                  |                   | 45.                         | <b>~</b> ^1 | مور                      | H                         | ý i             | E = None                              |
| Morre                                                              |                                  |                   | D                           | <i>s</i> 7  | <i></i> 2<               | 9                         |                 | F = Other                             |
| Kerk                                                               |                                  |                   |                             | سا          | . 7                      |                           | S               |                                       |
| 0                                                                  |                                  |                   |                             | PRESE       | PRESERVATION CODE        |                           |                 | For Laboratory Use Only               |
| Sample Description (include sample type ie grab or composite)      | Date Time<br>Collected Collected | Time<br>Collected |                             |             |                          | ·                         | ₹ <sub>17</sub> | LAB COMMENTS Laboratory Sample Number |
| 109225140                                                          | 4113127 0855                     | <b>C855</b>       | 17.27                       | 10.89       | 84.EJS                   | 7.50                      | ×               |                                       |
| 1222001                                                            |                                  | 5445              | 21,65                       | 11.28       | 532.08                   | 8.15                      | ×               |                                       |
| 041322003                                                          |                                  | 1039              | 56.11                       | 10.96       | 288,15                   | 8.44                      | ×               |                                       |
| 400 222 004                                                        |                                  | 1128              | 22.88                       | 05:11       | 511.10                   | 8,25                      | ×               |                                       |
| 041322005                                                          |                                  | 1201              | 21.31                       | 11.17       | 540.31                   | 8.05                      | <b>&gt;</b>     |                                       |
| 941377006                                                          |                                  | 1233              | 18.59                       | 11.33       | 590.92                   |                           | ×               |                                       |
| 10022500                                                           |                                  | LOE!              | C1.2                        | 11.10       | J1.801                   | 7.46                      | ×               |                                       |
| 8077210                                                            |                                  | 5581              | \$5'L1                      | 11.w3       | 12, 820                  | L                         | ×               |                                       |
| 600 275140                                                         |                                  | 1211              | 49.1                        | 10.79       | 9.1101                   | 7.33                      | ×               |                                       |
| 041322010                                                          |                                  | 9241              | 2                           | £<br>Z      | <b>∢</b> 2               | <b>∠</b> 2                | ×               |                                       |
| 110225140                                                          | <b>→</b>                         | 0191              | x 2                         | 20.89       | 012,51                   | 7.87                      | ×               |                                       |
|                                                                    |                                  |                   |                             |             |                          |                           |                 |                                       |
|                                                                    |                                  |                   |                             |             |                          |                           |                 |                                       |
|                                                                    |                                  | 417               | 215114                      | 1           |                          |                           |                 |                                       |
|                                                                    | -                                |                   | 97                          |             |                          |                           |                 |                                       |
| Love allegeth Date/Time \$151.22 805                               | Received by:                     | 77                | 124                         | Date        | Date/Time: <b>4//</b> 4/ | 22 08                     | 0805            | Yes                                   |
| d Date/Time:                                                       | Received by:                     |                   |                             | Date        | Date/Time:               |                           | 37.82           | Sample pH check: ok/adjusted          |
| Relinquished by: Date/Time:                                        | Received by:                     |                   |                             | Date        | Date/Time:               |                           |                 |                                       |
| Relinquished by: Date/Time:                                        | Received by:                     |                   |                             | Date        | Date/Time:               |                           |                 |                                       |
| Logged in by/Date:                                                 | Due Date::                       |                   |                             |             |                          | Project Specialist:       | st              |                                       |
| Activity Code:                                                     | Storage:                         |                   |                             |             |                          | Reviewed and Approved by: | Approved        | bý. Date:                             |
| Results Reported by: Date: Time:                                   | Reported To:                     |                   |                             |             |                          |                           |                 |                                       |
| Test Codes:                                                        |                                  |                   |                             |             |                          |                           |                 |                                       |
|                                                                    |                                  |                   |                             |             |                          |                           |                 |                                       |
|                                                                    |                                  |                   |                             |             |                          |                           |                 |                                       |
| White Copy (Original) - To Laboratory Services PSB Annex Room A070 |                                  | ow Copy -         | Yellow Copy - Customer Copy | Vao         |                          |                           |                 |                                       |
|                                                                    |                                  |                   |                             |             |                          |                           |                 |                                       |

To: Eric Kovatch
PSB Annex A231

From: WEC Business Services

Laboratory Services PSBA-A070 WDNR Cert # 241329000

Report Date: Monday, December 5, 2022

The following are the analytical results for samples received by Laboratory Services on 10/06/2022

Sample Description: 100522001 P4 Landfill CCR Well Sample

Sample ID: AE62999 Serial/Impact ID: W20D

Sample Collection Date: 10/5/22 Collection Time: 11:31

|                           |        |            |              | Result | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|--------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <b>LOD</b> | <u>Units</u> | Flag   | Method         | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 23.12  | 0.05       | feet         |        | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 13     | 0.1        | Degrees C    |        | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 634    | 0          | umhos        |        | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 7.1    | 0.1        | Units        |        | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 187    | 4.4        | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 22600  | 76.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 15000  | 31.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 2840   | 237        | ug/L         |        | EPA 200.7      | 10/26/22    | 020            |
| Dissolved Sodium          | 77300  | 420        | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.1    | 0.095      | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride            | 11.9   | 0.43       | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Suspended Solids    | 0.50   | 0.48       | mg/L         | J      | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 388    | 8.7        | mg/L         |        | Std Mtd 2540 C | 10/10/22    | 020            |
| Dissolved Chloride        | 11.4   | 0.43       | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 178    | 4.4        | mg/L         |        | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | 116    | 5          | mg/L         |        | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.58   | 0.1        | mg/l         |        | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 7.08   | 0.1        | NTU'S        |        | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | 23.7   | 1          | mV           |        | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 23.7   | 0.0762     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.403  | 0.0030     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522002 P4 Landfill CCR Well Sample

Sample ID: AE63000 Serial/Impact ID: QAQC1

Sample Collection Date: 10/5/22 Collection Time: 11:36

|                        |        |            |              | Result      | Analysis       | Analysis    |                |
|------------------------|--------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>       | Result | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <b>Date</b> | <b>Analyst</b> |
| Dissolved Sulfate      | 188    | 4.4        | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium      | 21800  | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium    | 14300  | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium    | 2750   | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium       | 75200  | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride         | 1.1    | 0.095      | mg/L         |             | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride         | 12.0   | 0.43       | mg/L         |             | EPA 300.0      | 10/14/22    | 020            |
| Total Suspended Solids | 0.80   | 0.48       | mg/L         | J           | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids | 390    | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/10/22    | 020            |
| Dissolved Chloride     | 11.4   | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate          | 180    | 4.4        | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |

| Total Alkalinity as CaCO3 | 116   | 5      | mg/L | SM 2320 B-1997 | 10/18/22 | 020 |
|---------------------------|-------|--------|------|----------------|----------|-----|
| Total Calcium             | 23.6  | 0.0762 | mg/L | EPA 200.7      | 10/26/22 | 020 |
| Total Boron               | 0.434 | 0.0303 | mg/L | EPA 200.7      | 10/26/22 | 020 |

Sample Description: 100522003 P4 Landfill CCR Well Sample

Sample ID: AE63001 Serial/Impact ID: W20B

Sample Collector: ND Sample Collection Date: 10/5/22 Collection Time: 12:21

|                           |        |            |              | Result | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|--------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <b>LOD</b> | <u>Units</u> | Flag   | Method         | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 7.76   | 0.05       | feet         |        | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 13     | 0.1        | Degrees C    |        | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 843    | 0          | umhos        |        | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 7.4    | 0.1        | Units        |        | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 138    | 2.2        | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 58400  | 76.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 41000  | 31.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 1470   | 237        | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 38600  | 42         | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 0.79   | 0.095      | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride            | 23.4   | 0.43       | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Suspended Solids    | 1.7    | 0.48       | mg/L         |        | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 466    | 8.7        | mg/L         |        | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 22.6   | 2.2        | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 138    | 2.2        | mg/L         |        | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | 278    | 5          | mg/L         |        | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.53   | 0.1        | mg/l         |        | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 6.08   | 0.1        | NTU'S        |        | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -129   | 1          | mV           |        | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 67.3   | 0.0762     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.305  | 0.0030     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522004 P4 Landfill CCR Well Sample

Sample ID: AE63002 Serial/Impact ID: W31B

Sample Collection Date: 10/5/22 Collection Time: 12:56

|                           |        |            |              | Result | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|--------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <b>LOD</b> | <u>Units</u> | Flag   | <b>Method</b>  | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 3.11   | 0.05       | feet         |        | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 22     | 0.1        | Degrees C    |        | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 1014   | 0          | umhos        |        | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 7.4    | 0.1        | Units        |        | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 139    | 2.2        | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 23400  | 76.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 12500  | 31.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 2070   | 237        | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 82500  | 42         | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 0.22   | 0.095      | mg/L         | J      | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride            | 78.5   | 2.2        | mg/L         |        | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | 2.9    | 0.48       | mg/L         |        | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 586    | 8.7        | mg/L         |        | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 74.8   | 2.2        | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 140    | 2.2        | mg/L         |        | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | 311    | 5          | mg/L         |        | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 1.04   | 0.1        | mg/l         |        | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 8.98   | 0.1        | NTU'S        |        | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -162.1 | 1          | mV           |        | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 99.1   | 0.0762     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |

Total Boron 0.0883 0.0030 mg/L EPA 200.7 10/26/22 020

Sample Description: 100522005 P4 Landfill CCR Well Sample

Sample ID: AE63003 Serial/Impact ID: W74

Sample Collector: ND Sample Collection Date: 10/5/22 Collection Time: 13:48

|                           |           |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|-----------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result    | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <u>Date</u> | <b>Analyst</b> |
| Field Water Level         | 23.40     | 0.05       | feet         |             | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 13        | 0.1        | Degrees C    |             | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 596       | 0          | umhos        |             | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 7.9       | 0.1        | Units        |             | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 169       | 0.077      | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 17400     | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 13900     | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 1980      | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 77400     | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.1       | 0.095      | mg/L         |             | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride            | 15.5      | 0.43       | mg/L         |             | EPA 300.0      | 10/14/22    | 020            |
| Total Suspended Solids    | Less Than | 0.48       | mg/L         |             | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 332       | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 14.8      | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 172       | 4.4        | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | 107       | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.82      | 0.1        | mg/l         |             | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 0.33      | 0.1        | NTU'S        |             | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | 38.3      | 1          | mV           |             | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 19.4      | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.395     | 0.0030     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522006 P4 Landfill CCR Well Sample

Sample ID: AE63004 Serial/Impact ID: W75

Sample Collector: ND Sample Collection Date: 10/5/22 Collection Time: 14:39

|                           |           |            |              | Result | Analysis       | Analysis    |                |
|---------------------------|-----------|------------|--------------|--------|----------------|-------------|----------------|
| <b>Parameter</b>          | Result    | <b>LOD</b> | <u>Units</u> | Flag   | <b>Method</b>  | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 25.47     | 0.05       | feet         |        | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 13        | 0.1        | Degrees C    |        | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 541       | 0          | umhos        |        | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 8.1       | 0.1        | Units        |        | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 134       | 0.077      | mg/L         |        | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 18000     | 76.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 12700     | 31.2       | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 2450      | 237        | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 73400     | 42         | ug/L         |        | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.1       | 0.095      | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Chloride            | 9.6       | 0.43       | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Suspended Solids    | Less Than | 0.48       | mg/L         |        | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 302       | 8.7        | mg/L         |        | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 9.2       | 0.43       | mg/L         |        | EPA 300.0      | 10/14/22    | 020            |
| Total Sulfate             | 133       | 2.2        | mg/L         |        | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | 124       | 5          | mg/L         |        | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 1.06      | 0.1        | mg/l         |        | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | Less Than | 0.1        | NTU'S        |        | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -173.4    | 1          | mV           |        | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 18.2      | 0.0762     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.404     | 0.0030     | mg/L         |        | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522006 P4 Landfill CCR Well Sample

Sample ID: AE63005 Serial/Impact ID: W75

Sample Collector: ND Sample Collection Date: 10/5/22 Collection Time: 15:17

|                           |        |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <u>LOD</u> | <u>Units</u> | <u>Flag</u> | Method         | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 26.49  | 0.05       | feet         |             | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 14     | 0.1        | Degrees C    |             | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 577    | 0          | umhos        |             | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 8.2    | 0.1        | Units        |             | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 139    | 2.2        | mg/L         |             | EPA 300.0      | 10/20/22    | 020            |
| Dissolved Calcium         | 16700  | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 11800  | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 2000   | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 74600  | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.0    | 0.095      | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Chloride            | 11.0   | 0.43       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | 0.60   | 0.48       | mg/L         | J           | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 288    | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 11.1   | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 144    | 4.4        | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Alkalinity as CaCO3 | 118    | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.96   | 0.1        | mg/l         |             | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 2.42   | 0.1        | NTU'S        |             | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -183   | 1          | mV           |             | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 18.8   | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.428  | 0.0030     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
|                           |        |            |              |             |                |             |                |

Sample Description: 100522007 P4 Landfill CCR Well Sample

Sample ID: AE63006 Serial/Impact ID: W76

Sample Collection Date: 10/5/22 Collection Time: 16:03

|                           |        |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 14.82  | 0.05       | feet         |             | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 12     | 0.1        | Degrees C    |             | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 291    | 0          | umhos        |             | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 8.6    | 0.1        | Units        |             | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 19.0   | 0.44       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | 9250   | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 4420   | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 821    | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 43800  | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.5    | 0.095      | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Chloride            | 8.6    | 0.43       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | 0.70   | 0.48       | mg/L         | J           | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 138    | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 8.6    | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 19.0   | 0.44       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Alkalinity as CaCO3 | 117    | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.56   | 0.1        | mg/l         |             | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | 10.21  | 0.1        | NTU'S        |             | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -155.7 | 1          | mV           |             | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 11.5   | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.597  | 0.0303     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522008 P4 Landfill CCR Well Sample

Sample ID: AE63007 Serial/Impact ID: W17BR

Sample Collection Date: 10/5/22 Collection Time: 16:45

|                           |        |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|--------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <b>Date</b> | <b>Analyst</b> |
| Field Water Level         | 24.70  | 0.05       | feet         |             | H2OD           | 10/3/22     | 020            |
| Field Temperature         | 13     | 0.1        | Degrees C    |             | TEMP           | 10/3/22     | 020            |
| Field Conductivity        | 532    | 0          | umhos        |             | FCOND25        | 10/3/22     | 020            |
| Field pH                  | 8.3    | 0.1        | Units        |             | FIELDPH        | 10/3/22     | 020            |
| Dissolved Sulfate         | 126    | 2.2        | mg/L         |             | EPA 300.0      | 10/20/22    | 020            |
| Dissolved Calcium         | 95000  | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 57900  | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 1380   | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 14500  | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.1    | 0.095      | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Chloride            | 11.6   | 0.43       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | 2.1    | 0.48       | mg/L         |             | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 298    | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 11.6   | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 131    | 2.2        | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Alkalinity as CaCO3 | 115    | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 0.53   | 0.1        | mg/l         |             | FIELDDO        | 10/3/22     | 020            |
| Turbidity                 | 57.54  | 0.1        | NTU'S        |             | EPA 180.1      | 10/3/22     | 020            |
| Redox Potential           | -205.7 | 1          | mV           |             | ASTM D1498-93  | 10/3/22     | 020            |
| Total Calcium             | 21.2   | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.437  | 0.0030     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |

Sample Description: 100522009 P4 Landfill CCR Well Sample

Sample ID: AE63008 Serial/Impact ID: W73

Sample Collection Date: 10/5/22 Collection Time: 17:37

|                           |           |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|-----------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result    | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <u>Date</u> | <b>Analyst</b> |
| Field Water Level         | 20.41     | 0.05       | feet         |             | H2OD           | 10/3/22     | ND             |
| Field Temperature         | 12        | 0.1        | Degrees C    |             | TEMP           | 10/3/22     | ND             |
| Field Conductivity        | 592       | 0          | umhos        |             | FCOND25        | 10/3/22     | ND             |
| Field pH                  | 7.6       | 0.1        | Units        |             | FIELDPH        | 10/3/22     | ND             |
| Dissolved Sulfate         | 125       | 2.2        | mg/L         |             | EPA 300.0      | 10/20/22    | 020            |
| Dissolved Calcium         | 22400     | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | 12200     | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | 2050      | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | 81400     | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | 1.2       | 0.095      | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Chloride            | 8.8       | 0.43       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | Less Than | 0.48       | mg/L         |             | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | 328       | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | 8.9       | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | 132       | 2.2        | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Alkalinity as CaCO3 | 153       | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Dissolved Oxygen-Field    | 1.95      | 0.1        | mg/l         |             | FIELDDO        | 10/3/22     | ND             |
| Turbidity                 | Less Than | 0.1        | NTU'S        |             | EPA 180.1      | 10/3/22     | ND             |
| Redox Potential           | -60.8     | 1          | mV           |             | ASTM D1498-93  | 10/3/22     | ND             |
| Total Calcium             | 23.4      | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | 0.414     | 0.0030     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |

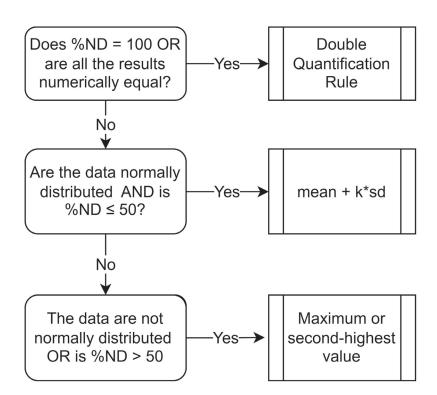
Sample Description: 100522011 P4 Landfill CCR Well Sample

Sample ID: AE63009

Serial/Impact ID: EB 1

Sample Collector: ND Sample Collection Date: 10/5/22 Collection Time: 18:00

|                           |           |            |              | Result      | Analysis       | Analysis    |                |
|---------------------------|-----------|------------|--------------|-------------|----------------|-------------|----------------|
| <u>Parameter</u>          | Result    | <b>LOD</b> | <u>Units</u> | <u>Flag</u> | Method         | <b>Date</b> | <b>Analyst</b> |
| Dissolved Sulfate         | Less Than | 0.44       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Dissolved Calcium         | Less Than | 76.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Magnesium       | Less Than | 31.2       | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Potassium       | Less Than | 237        | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Dissolved Sodium          | Less Than | 42         | ug/L         |             | EPA 200.7      | 10/28/22    | 020            |
| Total Fluoride            | Less Than | 0.095      | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Chloride            | Less Than | 0.43       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Suspended Solids    | Less Than | 0.48       | mg/L         |             | Std Mtd 2540 D | 10/11/22    | 020            |
| Total Dissolved Solids    | Less Than | 8.7        | mg/L         |             | Std Mtd 2540 C | 10/11/22    | 020            |
| Dissolved Chloride        | Less Than | 0.43       | mg/L         |             | EPA 300.0      | 10/19/22    | 020            |
| Total Sulfate             | Less Than | 0.44       | mg/L         |             | EPA 300.0      | 10/17/22    | 020            |
| Total Alkalinity as CaCO3 | Less Than | 5          | mg/L         |             | SM 2320 B-1997 | 10/18/22    | 020            |
| Total Calcium             | Less Than | 0.0762     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |
| Total Boron               | Less Than | 0.0030     | mg/L         |             | EPA 200.7      | 10/26/22    | 020            |


If there are any questions concerning this report, please contact

Laboratory Services at (414) 221-4595.

Sample Comments:

APPENDIX B
STATISTICAL METHODOLOGY FOR DETERMINATION OF BACKGROUND VALUES

# Notes %ND = Percent non-detected samples sd = standard deviation k = kappa for site-wide false positive rate Alpha Levels Confidence Limit = 0.1



When data are not normally distributed or %ND > 50, the maximum value is used if the background sample size is < 60. Where the background sample size is  $\ge 60$ , the achievable per-constituent false positive rates for the maximum and second-highest background values will be compared, and the background value with the achievable per-constituent false positive rate that is closest to, but does not exceed, the target per-constituent false positive rate of 0.015% is used.



### APPENDIX C ALTERNATE SOURCE DEMONSTRATIONS

Intended for

We Energies

Document type

**Alternate Source Demonstration Report** 

Date

November 13, 2022

# 40 CFR § 257.94(E)2: ALTERNATE SOURCE DEMONSTRATION PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

# 40 CFR § 257.94(E)2: ALTERNATE SOURCE DEMONSTRATION PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

Project name P4 Ash Landfill
Project no. 1940102327
Recipient We Energies

Document type Alternate Source Demonstration

Revision 0

Date November 13, 2022
Prepared by Kristen L. Theesfeld, PG
Checked by Nathaniel R. Keller, PG
Approved by Eric J. Tlachac, PE

Description Alternate Source Demonstration for the P4 Ash Landfill

Ramboll

234 W. Florida Street

Fifth Floor

Milwaukee, WI 53204

USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

#### **CONTENTS**

| 1.      | Introduction                                           | 3  |
|---------|--------------------------------------------------------|----|
| 1.1     | Overview                                               | 3  |
| 1.2     | Background                                             | 3  |
| 1.3     | Groundwater Monitoring                                 | 4  |
| 1.4     | Geology                                                | 4  |
| 2.      | Alternate Source Demonstration                         | 5  |
| 2.1     | Summary                                                | 5  |
| 2.2     | ASD Supporting Information                             | 5  |
| 2.2.1   | Landfill Construction                                  | 5  |
| 2.2.2   | Lack of Indicator Parameters                           | 5  |
| 2.2.3   | Aquifer Geochemistry                                   | 7  |
| 2.2.3.1 | General Groundwater Chemistry of the Silurian Dolomite | 7  |
| 2.2.3.2 | Geochemical Variations within the Silurian Dolomite    | 8  |
| 2.2.3.3 | Ion Ratios                                             | 10 |
| 2.2.3.4 | Regionally Elevated Fluoride Concentrations            | 10 |
| 3.      | Conclusions and Certification                          | 12 |
| 4.      | References                                             | 14 |
|         |                                                        |    |

#### **TABLES (IN TEXT)**

Table A Summary of Average Ion Ratios

#### **TABLES (ATTACHED)**

Table 1 Pleasant Prairie Power Plan Ash Landfill: Appendix III Analytical Results

Table 2 CCR Rule Groundwater Monitoring Well Information

#### FIGURES (IN TEXT)

| Figure A | Time Series Plot of Boron Concentrations                    |
|----------|-------------------------------------------------------------|
| Figure B | Time Series Plot of Sulfate Concentrations                  |
| Figure C | Piper Diagram for P4 Ash Landfill CCR Rule Monitoring Wells |
| Figure D | Stiff Diagram for P4 Ash Landfill CCR Rule Monitoring Wells |
| Figure E | Plot of Groundwater Elevations for W73, W20D, and W77       |
| Figure F | Time Series Plot of Fluoride Concentrations                 |
| Figure G | Fluoride Concentrations in Wisconsin Wells                  |

#### **FIGURES (ATTACHED)**

| Figure 1 | Site Location Map                                                                |
|----------|----------------------------------------------------------------------------------|
| Figure 2 | Well Location Map                                                                |
| Figure 3 | Uppermost Aquifer Groundwater Elevation Contour Map – April 13, 2022             |
| Figure 4 | Bedrock Elevation Contour Map                                                    |
| Figure 5 | Geologic Cross-Section A-A'                                                      |
| Figure 6 | Geologic Cross-Section B-B'                                                      |
| Figure 7 | Geologic Cross-Section C-C'                                                      |
| Figure 8 | Geologic Cross-Section D-D'                                                      |
| Figure 9 | Potential Contaminant Pathway Groundwater Elevation Contour Map - April 13, 2022 |

#### **ATTACHMENTS**

Attachment A Preliminary Bedrock Topography Map of Kenosha County, Wisconsin

P4 ASD FINAL\_221113.docx 1/14

#### **ACRONYMS AND ABBREVIATIONS**

§ Section

40 CFR Part 257 Title 40 of the Code of Federal Regulations Part 257

ASD alternate source demonstration
CCR coal combustion residuals
CCR Rule 40 CFR Part 257 Subpart D

D10 tenth semi-annual detection monitoring event

HDPE high density polyethylene

mg/L milligrams per liter

NAVD88 North American Vertical Datum of 1988

P4 Pleasant Prairie Power Plant

Ramboll Americas Engineering Solutions, Inc.

SSI statistically significant increase(s)

USEPA United States Environmental Protection Agency
WDNR Wisconsin Department of Natural Resources

P4 ASD FINAL\_221113.docx 2/14

#### 1. INTRODUCTION

#### 1.1 Overview

This document has been prepared on behalf of We Energies by Ramboll Americas Engineering Solutions, Inc. (Ramboll) to provide pertinent information for an alternate source demonstration (ASD) as allowed by 40 CFR § 257.94(e)(2) for the Pleasant Prairie Power Plant (P4) Ash Landfill, located in Pleasant Prairie, Wisconsin (**Figure 1**).

Initial baseline groundwater monitoring, consisting of a minimum of eight samples as required under 40 CFR § 257.94(b), was initiated in November 2015 and completed prior to October 17, 2017. The tenth semi-annual detection monitoring event (D10) samples were collected on April 13, 2022 and analytical data were received on May 17, 2022. Statistical analysis of the data for statistically significant increases (SSIs) of Title 40 of the Code of Federal Regulations Part 257 (40 CFR Part 257) Subpart D (CCR Rule) Appendix III parameters over background concentrations was completed within 90 days of receipt of sample results (August 15, 2022). That statistical determination identified the following SSIs at uppermost aquifer (i.e., bedrock groundwater unit) downgradient monitoring wells:

• Fluoride above the background prediction interval at wells W74 and W75

40 CFR § 257.94(e)(2) allows the owner or operator 90 days from the date of determination to demonstrate that a source other than the coal combustion residuals (CCR) unit caused the SSI, or that the SSI resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Pursuant to 40 CFR § 257.94(e)(2), the following demonstrates that sources other than the P4 Ash Landfill were the cause of the SSI for fluoride at wells W74 and W75 listed above. This ASD was completed within 90 days of determination of the SSIs (November 13, 2022) as required by 40 CFR § 257.94(e)(2).

#### 1.2 Background

The P4 Ash Landfill was constructed in 1980 and began filling in 1981. Initially, construction was completed on top of the existing clay (Cell 1). Cells 2-4 were constructed with a base of 5 feet of compacted clay. By 2014, all CCR was removed from previous Cells 1-4 and a new landfill cell was constructed over the footprint of the previous cells. The new landfill cell (Cell 1) was constructed with a composite liner and a leachate collection system in 2013 – 2014. The composite liner consists of a 60-mil high density polyethylene (HDPE) geomembrane and geosynthetic clay liner. The new Cell 1 was placed in service in 2014.

Final cover construction commenced in 2018 and was completed in 2022. The final cover consists of the following, beginning at ground surface:

- 6 inches of topsoil,
- · 24 inches of rooting zone soil,
- A geocomposite drainage layer,
- 40-mil textured linear low-density polyethylene geomembrane liner, and
- A 2-foot-thick compacted barrier layer.

P4 ASD FINAL\_221113.docx 3/14

#### 1.3 Groundwater Monitoring

Background groundwater sampling in compliance with the CCR Rule was initiated in November 2015, with the final round of background groundwater samples collected in August 2017. Groundwater is also sampled to meet the requirements of a Wisconsin Department of Natural Resources (WDNR) program and groundwater samples have been collected since the early 1990's. The CCR Rule monitoring program includes background wells W20D and W77, and downgradient wells W73 through W76. A map showing the groundwater monitoring system, including the WDNR program and CCR Rule monitoring wells, is presented on **Figure 2**. Groundwater generally flows to the north-northeast and representative groundwater contours are shown on **Figure 3**.

Samples were collected and analyzed in accordance with the Sampling and Analysis Plan (Natural Resource Technology, Inc., 2015) prepared for the P4 Ash Landfill. All monitoring data obtained under 40 CFR §§ 257.90-98 (as applicable) are presented in **Table 1**. Statistical evaluation of analytical data was performed in accordance with the Statistical Analysis Plan (Natural Resource Technology, an OBG Company, 2017) prepared for the landfill.

#### 1.4 Geology

The P4 Ash Landfill overlies more than 100 feet of unlithified glacial deposits. The glacial unit is underlain by Silurian dolomite (bedrock groundwater unit), which is the uppermost aquifer beneath and in the vicinity of the P4 Ash Landfill (**Figure 4**). The glacial deposits consist largely of clay-rich till of the Oak Creek Formation and have low hydraulic conductivity. Silt, sand, and gravel lenses also exist in the unlithified material beneath the current landfill area. Cross-sections (**Figures 5 through 8**) indicate most of the silt, sand, and gravel lenses are not laterally continuous beneath the current landfill area. However, silt, sand, and gravel lenses occurring between elevations 625 and 675 feet North American Vertical Datum of 1988 (NAVD88) may be laterally continuous beneath the current landfill area (**Figures 5 through 7**). These coarsergrained units represent a potential contaminant migration pathway, which is monitored in accordance with 40 CFR § 257.91(a)(2). Based on available data, groundwater flow in the coarser-grained glacial deposits is east (Figure 9).

In addition, a thin, sandy unit exists just above bedrock beneath most of the landfill area. Where present, the sand unit mantling the bedrock is monitored with the CCR Rule groundwater monitoring network.

P4 ASD FINAL\_221113.docx 4/14

#### 2. ALTERNATE SOURCE DEMONSTRATION

#### 2.1 Summary

As allowed by 40 CFR § 257.94(e)(2), this ASD demonstrates that sources other than the P4 Landfill caused the SSIs or that the apparent SSIs were a result of natural variation in groundwater quality. Lines of evidence supporting this ASD include the following:

- Landfill Construction: The existing P4 Ash Landfill Cell 1 was constructed during 2013-2014 with a composite liner (consisting of a geosynthetic clay liner and 60-mil HDPE geomembrane) and a leachate collection system. The P4 Ash Landfill also overlies a significant thickness of the Oak Creek Formation which generally has very low hydraulic conductivity.
- Indicator parameters (boron and sulfate) are not elevated: Concentrations of common CCR indicator parameters boron and sulfate are not elevated in monitoring wells downgradient with SSIs for fluoride. Lack of these indicator parameters indicates the P4 landfill is not the source of elevated fluoride concentrations.
- Aquifer Geochemistry: The distribution of naturally occurring inorganic constituents in the
  dolomite aquifer is variable and geochemical conditions which control the equilibrium
  concentrations change both laterally and vertically within the aquifer, resulting in
  concentrations which are variable, but unrelated to the P4 Ash Landfill.

Data and information supporting these ASD lines of evidence are discussed in more detail below.

#### 2.2 ASD Supporting Information

#### 2.2.1 Landfill Construction

This ASD is supported by the fact the P4 Ash Landfill was constructed with a composite liner including 60-mil HDPE geomembrane and geosynthetic clay liner, and a leachate collection system. Precipitation and/or leachate that collects on top of the liner is removed by a leachate collection system and managed in accordance with the landfill operating permit. Leachate levels are monitored with leachate head wells in the landfill and collection sump level monitoring; the system includes high level alarms to notify the landfill operators if leachate levels exceed predetermined levels. The system is flushed annually as part of regular operation and maintenance. System monitoring and reporting indicate the leachate collection system is functioning as designed and indicate there has been no evidence of leachate migration into underlying materials.

In the unlikely event leachate is not captured by the collection system, the landfill overlies 50-100 feet of low permeability silty clay and, as a result, the potential for downward migration of leachate into the uppermost aquifer is limited. Simpkins and Bradbury (1992) calculated downward velocities of 0.3 to 0.5 centimeters per year in the Oak Creek Formation. At the highest velocities, it would require over 3,000 years for leachate to migrate through 50 feet of the Oak Creek Formation, but the P4 Ash Landfill has only been active for 30 years (with the most recent Unit constructed in 2013) indicating the P4 Ash Landfill is not the source of the SSI.

#### 2.2.2 Lack of Indicator Parameters

Boron and sulfate are common indicators used to identify potential impacts from a CCR unit (Electric Power Research Institute, 2017). Concentrations of boron (Figure A) and sulfate

P4 ASD FINAL\_221113.docx 5/14

(Figure B) at W74 and W75 do not exceed background limits or exhibit an increasing trend. These results indicate the concentrations of fluoride and SSIs reported in W74 and W75 are not attributable to the P4 landfill.

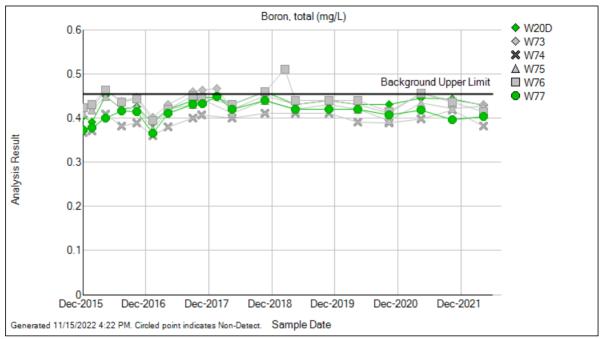
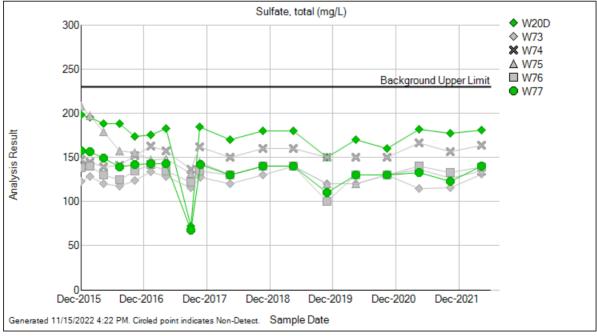




Figure A. Boron Concentrations Time Series



**Figure B. Sulfate Concentrations Time Series** 

P4 ASD FINAL\_221113.docx 6/14

#### 2.2.3 Aquifer Geochemistry

#### 2.2.3.1 General Groundwater Chemistry of the Silurian Dolomite

The most recent leachate and groundwater samples analyzed for ionic composition (major ions), 2017 for leachate and 2020 for groundwater, were used to generate a Piper diagram (**Figure C**) and Stiff diagrams (**Figure D**). Background (brown) and downgradient (blue) groundwater samples all plot within the same region of sodium-potassium-magnesium dominated cations and sulfate anions. Furthermore, the downgradient wells are bracketed by upgradient wells W20D and W77 on the diamond-shaped portion of the diagram. Leachate (green) samples collected from the CCR Unit indicate sodium-potassium-calcium dominated cations and chloride-sulfate dominated anions. Combined, these suggest downgradient groundwater reflects background ionic composition and is not being influenced by leachate.

## 

2020 Groundwater Samples

Figure C. Piper Diagram for P4 Ash Landfill CCR Rule Monitoring Wells

This conclusion is also supported by the Stiff diagrams (**Figure D**) which show upgradient and downgradient groundwater have similar shapes on the diagrams, while they are dissimilar to the shape of the leachate diagram, specifically, sulfate and calcium are less pronounced in the groundwater diagrams. Together, the similarity of ionic composition of background and compliance groundwater and the distinct ionic composition of leachate indicate the SSIs are due to natural variation rather than the influence of the landfill.

P4 ASD FINAL\_221113.docx 7/14



Figure D. Stiff Diagram for P4 Ash Landfill CCR Rule Monitoring Wells

#### 2.2.3.2 Geochemical Variations within the Silurian Dolomite

Natural variations in the composition (i.e., minerology) of the Silurian dolomite bedrock, which affect the presence of minerals and associated trace elements in groundwater, are observed at the P4 Ash Landfill. This natural variability of the dolomite bedrock, both vertically and laterally across the site, has resulted in minor variations in concentrations of fluoride in groundwater, amongst other naturally occurring inorganic constituents. Slightly elevated concentrations of fluoride at well W75 can be evaluated by looking at the screened bedrock intervals of monitoring wells at the P4 Ash Landfill along with the geologic descriptions of those intervals.

The screened intervals of the CCR Rule monitoring wells are provided on **Table 2**. Background well W77 is approximately screened from an elevation of 559 to 564 feet NAVD88. Background well W20D and downgradient wells W74, W75, and W76 are all screened at lower elevations in the bedrock between 545 and 553 feet NAVD88. Geologic descriptions of the dolomite bedrock on the boring logs for all of the background and downgradient wells are generally similar.

In general, groundwater flow in the upper portion of the Silurian dolomite is to the north; however, there are small variations resulting from seasonal pumping (i.e., drawdown) within the aquifer. Groundwater elevations are plotted below (**Figure E**).

P4 ASD FINAL\_221113.docx 8/14

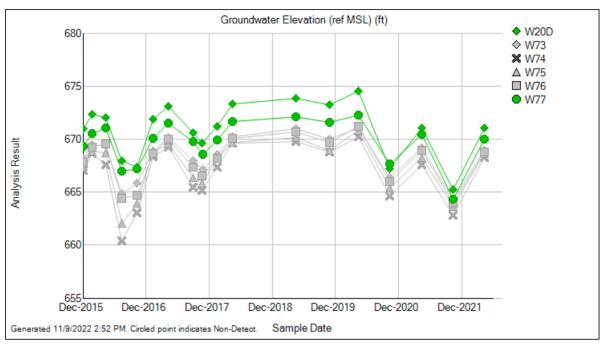



Figure E. Groundwater Elevations Time Series

The plot shows that lower groundwater elevations typically occur in the fall and higher elevations in the spring. Based on locations of private wells within the uppermost aquifer (**Attachment A**), it is likely that summer and fall groundwater pumping from the Silurian dolomite induces more northerly and potentially northwesterly flow directions, which may influence water quality as a result of changes to the groundwater flow path.

The temporal variability in concentrations of boron, sulfate, and fluoride are shown on the time series plots (**Figures A and B above and F below, respectively**). Although the concentrations vary between wells for each of the parameters, the trends are generally the same in magnitude and direction. Parallel trends in boron and sulfate, the primary indicator parameters of CCR leachate impacts on groundwater, would not be expected in background wells and downgradient wells if the P4 Ash landfill was impacting groundwater.

P4 ASD FINAL\_221113.docx 9/14

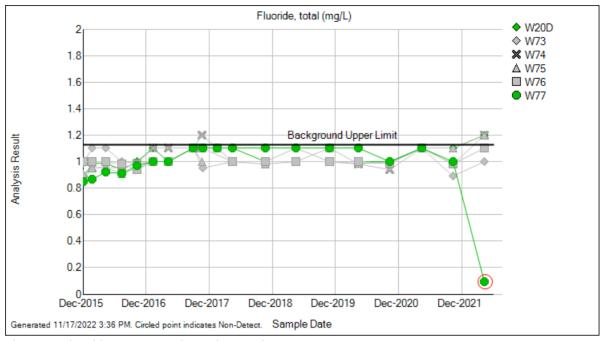



Figure F. Fluoride Concentrations Time Series

#### 2.2.3.3 Ion Ratios

The final line of evidence for this ASD, which is supported by previous analysis, is ion ratios for fluoride compared to other primary indicators of CCR impacts (i.e., boron and sulfate). A summary of the ion ratios in groundwater at background wells W20D and W77, downgradient wells W74 and W75, and leachate is presented in **Table A** below. The results show the ratios calculated for downgradient wells do not provide evidence of groundwater mixing with the leachate (i.e. the downgradient ratios do not fall in between background and leachate). The ratios calculated for downgradient wells are very similar to the background wells which indicates groundwater quality at wells W74 and W75 has not been impacted by leachate from the P4 Ash Landfill.

| Monitoring Well ID | F/B  | F/SO <sub>4</sub> |
|--------------------|------|-------------------|
| Leachate           | 0.39 | 0.0008            |
| W20D               | 2.41 | 0.0063            |
| W77                | 2.36 | 0.0075            |
| W74                | 2.62 | 0.0067            |
| W75                | 2.39 | 0.0071            |

#### 2.2.3.4 Regionally Elevated Fluoride Concentrations

Research conducted across the state of Wisconsin has identified distinct regions of elevated fluoride concentrations (**Figure G**). One region, located along Lake Michigan to the southern extent of the state, encompasses the approximate location of the P4 Ash Landfill (indicated by pink arrow). Fluoride concentrations are most often between 0.7-1.2 milligrams per liter (mg/L; identified by green circles), however, concentrations between 1.2-2.0 mg/L (identified by yellow

P4 ASD FINAL\_221113.docx 10/14

circles) are not uncommon in wells screened across the glacial sediments and Silurian dolomite. In fact, according to the study authors, "Most of the wells with elevated fluoride appear to be drawing from both Pleistocene glacial sediments and Silurian dolomite units. It is likely that fluorite is also the source of this elevated dissolved fluoride because fluorite mineralization occurs in the Silurian rocks of eastern Wisconsin." (Luczaj and Masarik, 2015).

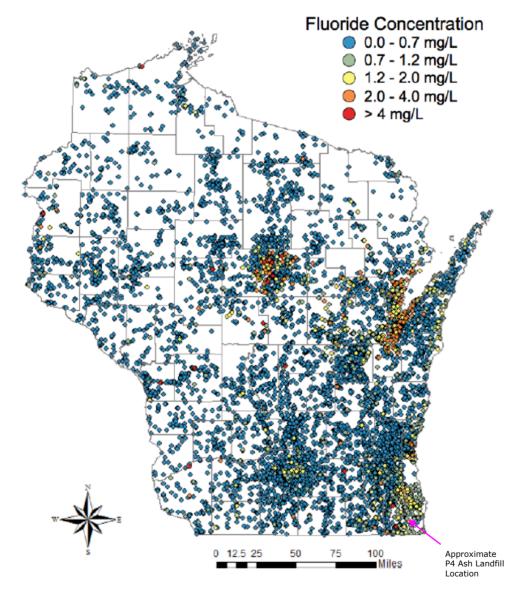



Figure G. Fluoride Concentrations in Wisconsin Wells (Luczaj and Masarik, 2015). The approximate location of the P4 Ash Landfill indicated by pink arrow.

P4 ASD FINAL\_221113.docx 11/14

#### 3. CONCLUSIONS AND CERTIFICATION

This document has been prepared on behalf of We Energies by Ramboll to provide pertinent information for an ASD as allowed by 40 CFR §257.94(e)(2) for the Pleasant Prairie Power Plant Ash Landfill located in Pleasant Prairie, Wisconsin.

Initial baseline groundwater monitoring consisting of a minimum of eight samples as required under 40 CFR §257.94(b) was initiated in November 2015 and completed prior to October 17, 2017. D10 samples were collected on April 13, 2022 for which analytical data was received on May 17, 2022. Statistical analysis of D10 samples for SSIs of 40 CFR Part 257 Appendix III parameters over background concentrations was completed within 90 days of collection of the sample (August 15, 2022). The determination identified the following SSIs (concentrations greater than background prediction intervals) at downgradient monitoring wells:

Fluoride at wells W74 and W75

40 CFR §257.94(e)(2) allows the owner or operator 90 days from the date of determination to demonstrate that a source other than the CCR unit caused the SSI, or that the SSI resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Pursuant to 40 CFR §257.94(e)(2), this document demonstrates that sources other than the P4 Ash Landfill were the cause of the SSI listed above. This ASD was completed within 90 days of determination of the SSIs (November 13, 2022) as required by 40 CFR §257.94(e)(2).

Pursuant to 40 CFR §257.94(e)(2), the following lines of evidence were presented in this report to demonstrate that the listed SSIs are due to alternate sources as follows:

- Landfill Construction
- Indicator parameters (boron and sulfate) are not elevated
- Aquifer Geochemistry

The preceding information serves as the ASD prepared in accordance with 40 CFR §257.94(e)(2) and supports the position that the SSI observed during D10 is not due to a release from the CCR unit but are the result of naturally occurring conditions. Therefore, no further action (i.e., assessment monitoring) is warranted and the P4 Ash Landfill will remain in detection monitoring.

P4 ASD FINAL\_221113.docx 12/14

I, Eric J. Tlachac, a qualified professional engineer in good standing in the State of Wisconsin, certify that enclosed information is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Eric J. Tlachac, PE

Professional Engineer No. 36088-6

State of Wisconsin

Ramboll Americas Engineering Solutions, Inc.

Date: November 13, 2022



I, Nathaniel R. Keller, a qualified professional geologist, certify that the enclosed information is accurate as of the date of my signature below. The content of this report is not to be used for other than its intended purpose and meaning, or for extrapolations beyond the interpretations contained herein.

Nathaniel R. Keller, PG

Professional Geologist No. 1283-013

State of Wisconsin

Ramboll Americas Engineering Solutions, Inc.

Date: November 13, 2022



P4 ASD FINAL\_221113.docx 13/14

#### 4. REFERENCES

Electric Power Research Institute, 2017. Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Palo Alto, CA: 2017. 3002010920.

Luczaj, John and K. Masarik, 2015. Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA. Resources, 4, pp. 323-357. doi: 10.3390/resources4020323.

Natural Resource Technology, Inc., 2015. Sampling and Analysis Plan Revision 1, Pleasant Prairie Power Plant Ash Landfill, Pleasant Prairie, Wisconsin, December 8, 2015.

Natural Resource Technology, an OBG Company, 2017. Statistical Analysis Plan, Pleasant Prairie Power Plant Ash Landfill, Pleasant Prairie, Wisconsin, October 17, 2017.

Peters, Roger M., 2004. Preliminary Bedrock Topography Map of Kenosha County, Wisconsin. Wisconsin Geological and Natural History Survey. Open File Report 2004-13.

Simpkins, W.W and K.R. Bradbury, 1992. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin. Journal of Hydrology. 132 (283-319).

P4 ASD FINAL\_221113.docx 14/14

#### **TABLES**

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

|                    | G 1.D.      |              |               |               |              |                 |                |
|--------------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
| <b>Location ID</b> | Sample Date |              |               |               |              |                 |                |
|                    |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
|                    |             |              |               |               |              |                 |                |
| W17BR              | 12/3/2015   | 0.5900       | 13.5000       | 11.4          | 1.40         | 8.2             | 30.7           |
|                    | 1/25/2016   | 0.5850       | 13.6000       | 11.4          | 1.40         | 8.0             | 28.1           |
|                    | 4/14/2016   | 0.6680       | 15.2000       | 11.1          | 1.40         | 7.9             | 28.1           |
|                    | 7/12/2016   | 0.6260       | 13.9000       | 11.6          | 1.30         | 7.9             | 28.9           |
|                    | 10/12/2016  | 0.6210       | 13.2000       | 11.1          | 1.40         | 8.6             | 26.5           |
|                    | 1/11/2017   | 0.5560       | 12.0000       | 10.8          | 1.40         | 8.4             | 25.3           |
|                    | 4/11/2017   | 0.6300       | 12.0000       | 10.7          | 1.50         | 8.5             | 25.3           |
|                    | 8/31/2017   | 0.6500       | 12.7000       | 11.0          | 1.50         | 8.0             | 25.1           |
|                    | 10/23/2017  | 0.6530       | 12.0000       | 11.5          | 1.50         | 8.3             | 25.0           |
|                    | 4/16/2018   | 0.6200       | 12.0000       | 12.0          | 1.40         | 7.3             | 24.0           |
|                    | 10/23/2018  | 0.6600       | 13.0000       | 11.0          | 1.40         | 8.4             | 23.0           |
|                    | 4/15/2019   | 0.6400       | 12.0000       | 11.0          | 1.40         | 8.8             | 25.0           |
|                    | 10/30/2019  | 0.6400       | 12.0000       | 9.2           | 1.40         | 8.3             | 21.0           |
|                    | 4/14/2020   | 0.6400       | 12.0000       | 9.2           | 1.30         | 8.5             | 21.0           |
|                    | 10/13/2020  | 0.6080       | 12.4000       | 9.5           | 1.40         | 8.1             | 22.0           |
|                    | 4/13/2021   | 0.6630       | 12.1000       | 9.6           | 1.40         | 8.3             | 20.7           |
|                    | 10/12/2021  | 0.6440       | 11.8000       | 8.0           | 1.40         | 8.2             | 17.4           |
|                    | 4/13/2022   | 0.6080       | 11.5000       | 8.0           | 1.30         | 8.4             | 17.9           |

#### Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |  |  |
|-------------|-------------|-----------|--|--|
|             |             | TDS, mg/L |  |  |
|             |             |           |  |  |
| W17BR       | 12/3/2015   | 168.0     |  |  |
|             | 1/25/2016   | 172.0     |  |  |
|             | 4/14/2016   | 208.0     |  |  |
|             | 7/12/2016   | 202.0     |  |  |
|             | 10/12/2016  | 178.0     |  |  |
|             | 1/11/2017   | 178.0     |  |  |
|             | 4/11/2017   | 184.0     |  |  |
|             | 8/31/2017   | 182.0     |  |  |
|             | 10/23/2017  | 172.0     |  |  |
|             | 4/16/2018   | 190.0     |  |  |
|             | 10/23/2018  | 140.0     |  |  |
|             | 4/15/2019   | 160.0     |  |  |
|             | 10/30/2019  | 140.0     |  |  |
|             | 4/14/2020   | 120.0     |  |  |
|             | 10/13/2020  | 210.0     |  |  |
|             | 4/13/2021   | 140.0     |  |  |
|             | 10/12/2021  | 190.0     |  |  |
|             | 4/13/2022   | 162.0     |  |  |
|             |             |           |  |  |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W20B        | 12/2/2015   | 0.2860       | 54.8000       | 14.3          | 0.77         | 7.6             | 95.7           |
|             | 1/25/2016   | 0.2870       | 47.5000       | 13.8          | 0.84         | 7.5             | 93.4           |
|             | 4/13/2016   | 0.3200       | 57.8000       | 10.4          | 0.84         | 10.0            | 74.5           |
|             | 7/13/2016   | 0.3010       | 60.8000       | 17.2          | 0.72         | 7.1             | 108.0          |
|             | 10/12/2016  | 0.3070       | 91.3000       | 23.4          | 0.74         | 7.5             | 125.0          |
|             | 1/10/2017   | 0.2720       | 58.9000       | 16.9          | 0.90         | 7.6             | 108.0          |
|             | 4/10/2017   | 0.3000       | 52.4000       | 13.5          | 0.80         | 7.7             | 93.1           |
|             | 8/31/2017   | 0.3100       | 63.6000       | 18.4          | 0.83         | 7.0             | 57.0           |
|             | 10/23/2017  | 0.3390       | 85.7000       | 28.7          | 0.77         | 7.2             | 161.0          |
|             | 4/16/2018   | 0.3100       | 90.0000       | 35.0          | 0.71         | 7.1             | 180.0          |
|             | 10/22/2018  | 0.3200       | 64.0000       | 17.0          | 0.83         | 7.4             | 110.0          |
|             | 4/15/2019   | 0.3100       | 57.0000       | 16.0          | 0.76         | 8.0             | 110.0          |
|             | 10/29/2019  | 0.3100       | 51.0000       | 13.0          | 0.84         | 7.5             | 92.0           |
|             | 4/14/2020   | 0.3000       | 48.0000       | 8.6           | 0.58         | 7.7             | 65.0           |
|             | 10/13/2020  | 0.2930       | 59.4000       | 14.0          | 0.68         | 7.4             | 94.0           |
|             | 4/13/2021   | 0.3210       | 56.2000       | 16.7          | 0.78         | 7.5             | 112.0          |
|             | 10/12/2021  | 0.3060       | 92.9000       | 32.1          | 0.62         | 7.1             | 192.0          |
|             | 4/13/2022   | 0.3000       | 57.2000       | 15.0          | 0.89         | 7.5             | 97.8           |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |
|-------------|-------------|-----------|
| FOCATION ID | Sample Date |           |
|             |             | TDS, mg/L |
| W20B        | 12/2/2015   | 410.0     |
| 202         | 1/25/2016   | 362.0     |
|             |             |           |
|             | 4/13/2016   | 362.0     |
|             | 7/13/2016   | 458.0     |
|             | 10/12/2016  | 502.0     |
|             | 1/10/2017   | 412.0     |
|             | 4/10/2017   | 382.0     |
|             | 8/31/2017   | 450.0     |
|             | 10/23/2017  | 510.0     |
|             | 4/16/2018   | 630.0     |
|             | 10/22/2018  | 470.0     |
|             | 4/15/2019   | 420.0     |
|             | 10/29/2019  | 360.0     |
|             | 4/14/2020   | 230.0     |
|             | 10/13/2020  | 440.0     |
|             |             | 400.0     |
|             | 4/13/2021   |           |
|             | 10/12/2021  | 1060.0    |
|             | 4/13/2022   | 388.0     |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Sample Date |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                 |                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------|----------------|
|             | B, tot, mg/L                                                                                                                                                                   | Ca, tot, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cl, tot, mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F, tot, mg/L                                 | pH (field), STD | SO4, tot, mg/L |
|             |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                              |                 |                |
| 12/2/2015   | 0.4040                                                                                                                                                                         | 36.2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.88                                         | 7.8             | 198.0          |
| 1/25/2016   | 0.3910                                                                                                                                                                         | 32.7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                         | 7.7             | 195.0          |
| 4/13/2016   | 0.4500                                                                                                                                                                         | 36.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.99                                         | 9.6             | 188.0          |
| 7/13/2016   | 0.4190                                                                                                                                                                         | 33.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.94                                         | 7.4             | 188.0          |
| 10/12/2016  | 0.4250                                                                                                                                                                         | 34.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.9             | 174.0          |
| 1/10/2017   | 0.3880                                                                                                                                                                         | 29.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.8             | 175.0          |
| 4/10/2017   | 0.4200                                                                                                                                                                         | 29.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.8             | 183.0          |
| 8/31/2017   | 0.4400                                                                                                                                                                         | 27.9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.4             | 72.2           |
| 10/23/2017  | 0.4470                                                                                                                                                                         | 26.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.7             | 184.0          |
| 1/18/2018   | 0.4470                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.10                                         | 7.6             |                |
| 4/16/2018   | 0.4300                                                                                                                                                                         | 26.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.4             | 170.0          |
| 10/22/2018  | 0.4600                                                                                                                                                                         | 27.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.8             | 180.0          |
| 4/15/2019   | 0.4300                                                                                                                                                                         | 26.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 8.1             | 180.0          |
| 10/29/2019  | 0.4400                                                                                                                                                                         | 25.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.5             | 150.0          |
| 4/14/2020   | 0.4300                                                                                                                                                                         | 45.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.7             | 170.0          |
| 10/12/2020  | 0.4300                                                                                                                                                                         | 25.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.00                                         | 7.8             | 160.0          |
| 4/13/2021   | 0.4450                                                                                                                                                                         | 24.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.7             | 182.0          |
| 10/12/2021  | 0.4440                                                                                                                                                                         | 25.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.10                                         | 7.5             | 177.0          |
| 4/13/2022   | 0.4280                                                                                                                                                                         | 25.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.20                                         | 7.8             | 181.0          |
|             | 12/2/2015 1/25/2016 4/13/2016 7/13/2016 10/12/2016 1/10/2017 4/10/2017 8/31/2017 10/23/2017 1/18/2018 4/16/2018 10/22/2018 4/15/2019 10/29/2019 4/14/2020 10/12/2020 4/13/2021 | B, tot, mg/L         12/2/2015       0.4040         1/25/2016       0.3910         4/13/2016       0.4500         7/13/2016       0.4190         10/12/2016       0.4250         1/10/2017       0.3880         4/10/2017       0.4200         8/31/2017       0.4400         10/23/2017       0.4470         1/18/2018       0.4470         4/16/2018       0.4300         10/22/2018       0.4600         4/15/2019       0.4300         10/29/2019       0.4400         4/14/2020       0.4300         10/12/2021       0.4450         10/12/2021       0.4440 | B, tot, mg/L       Ca, tot, mg/L         12/2/2015       0.4040       36.2000         1/25/2016       0.3910       32.7000         4/13/2016       0.4500       36.8000         7/13/2016       0.4190       33.4000         10/12/2016       0.4250       34.0000         1/10/2017       0.3880       29.0000         4/10/2017       0.4200       29.4000         8/31/2017       0.4400       27.9000         10/23/2017       0.4470       26.5000         1/18/2018       0.4470       26.0000         4/16/2018       0.4300       26.0000         10/22/2018       0.4300       26.0000         4/15/2019       0.4300       25.0000         4/14/2020       0.4300       45.0000         10/12/2021       0.4300       25.1000         4/13/2021       0.4450       24.6000         10/12/2021       0.4440       25.3000 | B, tot, mg/L   Ca, tot, mg/L   Cl, tot, mg/L |                 |                |

#### Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |
|-------------|-------------|-----------|
|             |             | TDS, mg/L |
|             |             |           |
| W20D        | 12/2/2015   | 452.0     |
|             | 1/25/2016   | 410.0     |
|             | 4/13/2016   | 428.0     |
|             | 7/13/2016   | 464.0     |
|             | 10/12/2016  | 424.0     |
|             | 1/10/2017   | 406.0     |
|             | 4/10/2017   | 398.0     |
|             | 8/31/2017   | 396.0     |
|             | 10/23/2017  | 382.0     |
|             | 1/18/2018   |           |
|             | 4/16/2018   | 390.0     |
|             | 10/22/2018  | 390.0     |
|             | 4/15/2019   | 360.0     |
|             | 10/29/2019  | 340.0     |
|             | 4/14/2020   | 350.0     |
|             | 10/12/2020  | 380.0     |
|             | 4/13/2021   | 348.0     |
|             | 10/12/2021  | 602.0     |
|             | 4/13/2022   | 366.0     |
|             |             |           |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
|             |             |              |               |               |              |                 |                |
| W31B        | 12/3/2015   | 0.0872       | 86.7000       | 33.7          | 0.37         | 7.5             | 118.0          |
|             | 1/26/2016   | 0.0796       | 84.7000       | 34.0          | 0.38         | 7.4             | 121.0          |
|             | 4/14/2016   | 0.0933       | 94.3000       | 32.3          | 0.38         | 7.4             | 113.0          |
|             | 7/12/2016   | 0.0844       | 84.9000       | 33.2          | 0.35         | 7.2             | 115.0          |
|             | 10/12/2016  | 0.0924       | 98.4000       | 40.8          | 0.33         | 7.6             | 119.0          |
|             | 1/11/2017   | 0.0798       | 88.4000       | 42.0          | 0.28         | 7.5             | 131.0          |
|             | 4/10/2017   | 0.0960       | 86.2000       | 35.4          | 0.30         | 7.6             | 123.0          |
|             | 8/31/2017   | 0.0990       | 91.3000       | 40.5          | 0.40         | 7.0             | 61.6           |
|             | 10/24/2017  | 0.0932       | 91.2000       | 38.9          | <0.50        | 7.1             | 127.0          |
|             | 4/16/2018   | 0.0860       | 90.0000       | 42.0          | 0.38         | 6.7             | 120.0          |
|             | 10/22/2018  | 0.0950       | 98.0000       | 47.0          | 0.39         | 7.4             | 130.0          |
|             | 4/15/2019   | 0.0890       | 93.0000       | 43.0          | 0.47         | 7.7             | 130.0          |
|             | 10/29/2019  | 0.0890       | 89.0000       | 40.0          | 0.36         | 7.5             | 120.0          |
|             | 4/14/2020   | 0.0900       | 96.0000       | 38.0          | 0.33         | 7.6             | 120.0          |
|             | 10/12/2020  | 0.0864       | 95.2000       | 43.0          | 0.34         | 7.4             | 110.0          |
|             | 4/13/2021   | 0.0911       | 96.6000       | 55.3          | 0.32         | 7.4             | 133.0          |
|             | 10/12/2021  | 0.0806       | 104.0000      | 66.9          | < 0.48       | 7.4             | 130.0          |
|             | 4/13/2022   | 0.0863       | 108.0000      | 67.9          | 0.36         | 7.3             | 139.0          |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |
|-------------|-------------|-----------|
|             |             | TDS, mg/L |
|             |             |           |
| W31B        | 12/3/2015   | 530.0     |
|             | 1/26/2016   | 512.0     |
|             | 4/14/2016   | 546.0     |
|             | 7/12/2016   | 572.0     |
|             | 10/12/2016  | 528.0     |
|             | 1/11/2017   | 522.0     |
|             | 4/10/2017   | 530.0     |
|             | 8/31/2017   | 536.0     |
|             | 10/24/2017  | 530.0     |
|             | 4/16/2018   | 520.0     |
|             | 10/22/2018  | 560.0     |
|             | 4/15/2019   | 530.0     |
|             | 10/29/2019  | 490.0     |
|             | 4/14/2020   | 510.0     |
|             | 10/12/2020  | 590.0     |
|             | 4/13/2021   | 530.0     |
|             | 10/12/2021  | 592.0     |
|             | 4/13/2022   | 584.0     |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W73         | 12/2/2015   | 0.4180       | 27.3000       | 10.4          | 0.99         | 8.2             | 123.0          |
|             | 1/25/2016   | 0.4220       | 46.0000       | 10.7          | 1.10         | 8.0             | 128.0          |
|             | 4/14/2016   | 0.4640       | 29.8000       | 11.0          | 1.10         | 8.3             | 120.0          |
|             | 7/13/2016   | 0.4370       | 18.8000       | 10.4          | 1.00         | 8.1             | 117.0          |
|             | 10/12/2016  | 0.4470       | 35.3000       | 10.9          | 0.99         | 8.5             | 124.0          |
|             | 1/11/2017   | 0.4010       | 20.0000       | 10.6          | 1.00         | 8.0             | 134.0          |
|             | 4/11/2017   | 0.4300       | 25.6000       | 10.4          | 1.00         | 8.5             | 128.0          |
|             | 8/31/2017   | 0.4600       | 26.0000       | 10.9          | 1.10         | 8.2             | 116.0          |
|             | 10/24/2017  | 0.4630       | 25.8000       | 11.2          | 0.95         | 8.4             | 127.0          |
|             | 1/18/2018   | 0.4660       |               |               |              | 8.0             |                |
|             | 4/16/2018   | 0.4200       | 19.0000       | 11.0          | 1.00         | 7.4             | 120.0          |
|             | 10/23/2018  | 0.4500       | 19.0000       | 11.0          | 1.00         | 8.2             | 130.0          |
|             | 4/15/2019   | 0.4300       | 19.0000       | 11.0          | 1.10         | 8.4             | 140.0          |
|             | 10/30/2019  | 0.4400       | 18.0000       | 11.0          | 1.00         | 7.6             | 120.0          |
|             | 4/15/2020   | 0.4300       | 20.0000       | 10.0          | 0.98         | 8.0             | 120.0          |
|             | 10/13/2020  | 0.4100       | 21.1000       | 11.0          | 1.00         | 8.1             | 130.0          |
|             | 4/13/2021   | 0.4550       | 20.3000       | 11.4          | 1.10         | 7.9             | 115.0          |
|             | 10/12/2021  | 0.4390       | 18.8000       | 12.4          | 0.89         | 8.1             | 116.0          |
|             | 4/13/2022   | 0.4310       | 28.0000       | 11.0          | 1.00         | 8.2             | 131.0          |

#### Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |
|-------------|-------------|-----------|
|             |             | TDS, mg/L |
|             |             |           |
| W73         | 12/2/2015   | 310.0     |
|             | 1/25/2016   | 306.0     |
|             | 4/14/2016   | 318.0     |
|             | 7/13/2016   | 328.0     |
|             | 10/12/2016  | 324.0     |
|             | 1/11/2017   | 280.0     |
|             | 4/11/2017   | 336.0     |
|             | 8/31/2017   | 328.0     |
|             | 10/24/2017  | 308.0     |
|             | 1/18/2018   |           |
|             | 4/16/2018   | 340.0     |
|             | 10/23/2018  | 300.0     |
|             | 4/15/2019   | 310.0     |
|             | 10/30/2019  | 310.0     |
|             | 4/15/2020   | 260.0     |
|             | 10/13/2020  | 350.0     |
|             | 4/13/2021   | 304.0     |
|             | 10/12/2021  | 322.0     |
|             |             |           |
|             | 4/13/2022   | 344.0     |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
|             |             |              |               |               |              |                 |                |
| W74         | 12/3/2015   | 0.3670       | 34.7000       | 22.1          | 0.87         | 7.9             | 147.0          |
|             | 1/26/2016   | 0.3700       | 33.6000       | 21.1          | 0.95         | 7.3             | 145.0          |
|             | 4/13/2016   | 0.4080       | 31.5000       | 18.3          | 0.96         | 8.8             | 139.0          |
|             | 7/12/2016   | 0.3820       | 26.0000       | 15.9          | 0.95         | 7.2             | 141.0          |
|             | 10/12/2016  | 0.3890       | 23.7000       | 13.4          | 0.99         | 8.2             | 152.0          |
|             | 1/10/2017   | 0.3590       | 22.5000       | 13.0          | 1.10         | 8.1             | 163.0          |
|             | 4/11/2017   | 0.3800       | 21.2000       | 13.9          | 1.10         | 8.2             | 157.0          |
|             | 8/31/2017   | 0.4000       | 20.3000       | 12.7          | 1.10         | 7.6             | 136.0          |
|             | 10/23/2017  | 0.4070       | 19.5000       | 13.8          | 1.20         | 7.8             | 162.0          |
|             | 1/18/2018   |              |               |               | 1.10         | 8.0             |                |
|             | 4/16/2018   | 0.4000       | 20.0000       | 13.0          | 1.00         | 7.7             | 150.0          |
|             | 10/23/2018  | 0.4100       | 21.0000       | 14.0          | 1.00         | 8.0             | 160.0          |
|             | 4/15/2019   | 0.4100       | 20.0000       | 14.0          | 1.00         | 8.5             | 160.0          |
|             | 10/30/2019  | 0.4100       | 21.0000       | 12.0          | 1.10         | 7.3             | 150.0          |
|             | 4/14/2020   | 0.3900       | 19.0000       | 12.0          | 0.98         | 8.0             | 150.0          |
|             | 10/13/2020  | 0.3890       | 20.0000       | 12.0          | 0.94         | 7.8             | 150.0          |
|             | 4/13/2021   | 0.3970       | 18.7000       | 13.1          | 1.10         | 8.1             | 166.0          |
|             | 10/12/2021  | 0.4170       | 20.2000       | 12.5          | 0.98         | 8.0             | 156.0          |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |  |
|-------------|-------------|-----------|--|
|             |             | TDS, mg/L |  |
|             |             |           |  |
| W74         | 12/3/2015   | 384.0     |  |
|             | 1/26/2016   | 360.0     |  |
|             | 4/13/2016   | 388.0     |  |
|             | 7/12/2016   | 376.0     |  |
|             | 10/12/2016  | 346.0     |  |
|             | 1/10/2017   | 340.0     |  |
|             | 4/11/2017   | 360.0     |  |
|             | 8/31/2017   | 372.0     |  |
|             | 10/23/2017  | 348.0     |  |
|             | 1/18/2018   |           |  |
|             | 4/16/2018   | 370.0     |  |
|             | 10/23/2018  | 340.0     |  |
|             | 4/15/2019   | 330.0     |  |
|             | 10/30/2019  | 350.0     |  |
|             | 4/14/2020   | 340.0     |  |
|             | 10/13/2020  | 350.0     |  |
|             | 4/13/2021   | 314.0     |  |
|             | 10/12/2021  | 402.0     |  |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W74         | 4/13/2022   | 0.3810       | 19.3000       | 12.7          | 1.20         | 8.0             | 164.0          |
| W75         | 12/3/2015   | 0.4100       | 28.9000       | 24.3          | 0.91         | 8.2             | 208.0          |
|             | 1/26/2016   | 0.4170       | 30.1000       | 24.5          | 0.95         | 7.6             | 197.0          |
|             | 4/13/2016   | 0.4480       | 29.5000       | 20.6          | 0.96         | 8.8             | 179.0          |
|             | 7/12/2016   | 0.4220       | 24.7000       | 16.2          | 0.91         | 7.5             | 157.0          |
|             | 10/12/2016  | 0.4250       | 23.7000       | 14.0          | 0.95         | 8.5             | 155.0          |
|             | 1/10/2017   | 0.3750       | 21.3000       | 13.5          | 1.00         | 8.2             | 147.0          |
|             | 4/11/2017   | 0.4200       | 22.6000       | 12.1          | 1.00         | 8.4             | 148.0          |
|             | 8/31/2017   | 0.4300       | 20.5000       | 10.6          | 1.10         | 7.9             | 132.0          |
|             | 10/23/2017  | 0.4430       | 19.9000       | 10.8          | 1.00         | 8.1             | 145.0          |
|             | 4/16/2018   | 0.4100       | 19.0000       | 9.8           | 1.00         | 7.7             | 130.0          |
|             | 10/23/2018  | 0.4400       | 21.0000       | 9.9           | 0.98         | 8.2             | 140.0          |
|             | 4/15/2019   | 0.4200       | 20.0000       | 9.4           | 1.00         | 8.6             | 140.0          |
|             | 10/30/2019  | 0.4300       | 20.0000       | 8.5           | 1.00         | 8.0             | 120.0          |
|             | 4/14/2020   | 0.4200       | 20.0000       | 8.6           | 0.99         | 8.3             | 120.0          |
|             | 10/13/2020  | 0.3950       | 20.5000       | 8.4           | 0.99         | 8.0             | 130.0          |
|             | 4/13/2021   | 0.4340       | 19.9000       | 9.2           | 1.10         | 8.2             | 136.0          |
|             | 10/12/2021  | 0.4220       | 20.3000       | 8.3           | 1.10         | 8.0             | 126.0          |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W75         | 4/13/2022   | 0.4270       | 21.0000       | 8.7           | 1.20         | 8.1             | 135.0          |
| W76         | 12/3/2015   | 0.4240       | 20.0000       | 18.3          | 1.00         | 8.2             | 138.0          |
|             | 1/26/2016   | 0.4310       | 20.6000       | 16.4          | 1.00         | 7.7             | 140.0          |
|             | 4/13/2016   | 0.4630       | 20.9000       | 14.1          | 1.00         | 9.5             | 130.0          |
|             | 7/12/2016   | 0.4360       | 18.8000       | 12.4          | 0.98         | 7.5             | 125.0          |
|             | 10/12/2016  | 0.4430       | 19.5000       | 12.6          | 0.94         | 8.7             | 135.0          |
|             | 1/11/2017   | 0.3950       | 18.2000       | 11.2          | 1.00         | 8.4             | 142.0          |
|             | 4/11/2017   | 0.4200       | 18.0000       | 10.9          | 1.00         | 8.6             | 135.0          |
|             | 8/31/2017   | 0.4500       | 18.1000       | 10.7          | 1.10         | 8.1             | 122.0          |
|             | 10/23/2017  | 0.4460       | 17.6000       | 10.8          | 1.10         | 7.8             | 135.0          |
|             | 4/16/2018   | 0.4300       | 18.0000       | 10.0          | 1.00         | 7.7             | 130.0          |
|             | 10/23/2018  | 0.4600       | 20.0000       | 11.0          | 1.00         | 7.8             | 140.0          |
|             | 2/14/2019   | 0.5100       |               |               |              | 8.3             |                |
|             | 4/15/2019   | 0.4400       | 19.0000       | 11.0          | 1.00         | 8.5             | 140.0          |
|             | 10/30/2019  | 0.4400       | 19.0000       | 10.0          | 1.00         | 6.9             | 100.0          |
|             | 4/14/2020   | 0.4400       | 19.0000       | 10.0          | 1.00         | 8.5             | 130.0          |
|             | 10/13/2020  | 0.4150       | 19.2000       | 10.0          | 0.99         | 8.2             | 130.0          |
|             | 4/13/2021   | 0.4550       | 19.1000       | 10.8          | 1.10         | 8.3             | 140.0          |
|             |             |              |               |               |              |                 |                |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| <b>Location ID</b> | Sample Date |           |
|--------------------|-------------|-----------|
|                    |             | TDS, mg/L |
|                    |             |           |
| W75                | 4/13/2022   | 320.0     |
|                    |             |           |
| W76                | 12/3/2015   | 334.0     |
|                    | 1/26/2016   | 330.0     |
|                    | 4/13/2016   | 366.0     |
|                    | 7/12/2016   | 360.0     |
|                    | 10/12/2016  | 336.0     |
|                    | 1/11/2017   | 306.0     |
|                    | 4/11/2017   | 334.0     |
|                    | 8/31/2017   | 336.0     |
|                    | 10/23/2017  |           |
|                    |             | 318.0     |
|                    | 4/16/2018   | 350.0     |
|                    | 10/23/2018  | 300.0     |
|                    | 2/14/2019   |           |
|                    | 4/15/2019   | 320.0     |
|                    | 10/30/2019  | 290.0     |
|                    | 4/14/2020   | 180.0     |
|                    | 10/13/2020  | 310.0     |
|                    |             | 290.0     |
|                    | 4/13/2021   | 290.0     |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W76         | 10/12/2021  | 0.4360       | 19.2000       | 10.4          | 0.98         | 8.3             | 133.0          |
|             | 4/13/2022   | 0.4150       | 18.3000       | 10.4          | 1.10         | 8.3             | 139.0          |
|             |             |              |               |               |              |                 |                |
| W77         | 12/3/2015   | 0.3730       | 33.8000       | 19.6          | 0.85         | 7.6             | 157.0          |
|             | 1/25/2016   | 0.3780       | 34.8000       | 18.9          | 0.87         | 7.3             | 156.0          |
|             | 4/13/2016   | 0.4000       | 34.0000       | 16.9          | 0.92         | 8.4             | 149.0          |
|             | 7/12/2016   | 0.4160       | 31.1000       | 14.8          | 0.91         | 7.3             | 139.0          |
|             | 10/12/2016  | 0.4150       | 30.7000       | 13.8          | 0.97         | 7.9             | 142.0          |
|             | 1/11/2017   | 0.3650       | 27.7000       | 13.2          | 1.00         | 7.6             | 143.0          |
|             | 4/10/2017   | 0.4100       | 27.3000       | 12.0          | 1.00         | 7.7             | 143.0          |
|             | 8/31/2017   | 0.4300       | 26.0000       | 11.2          | 1.10         | 7.2             | 67.7           |
|             | 10/24/2017  | 0.4320       | 25.5000       | 11.0          | 1.10         | 7.7             | 142.0          |
|             | 1/18/2018   | 0.4480       |               |               | 1.10         | 7.5             |                |
|             | 4/16/2018   | 0.4200       | 25.0000       | 10.0          | 1.10         | 7.5             | 130.0          |
|             | 10/22/2018  | 0.4400       | 26.0000       | 10.0          | 1.10         | 7.5             | 140.0          |
|             | 4/15/2019   | 0.4200       | 27.0000       | 9.4           | 1.10         | 8.0             | 140.0          |
|             | 10/29/2019  | 0.4200       | 25.0000       | 9.1           | 1.10         | 7.3             | 110.0          |
|             | 4/15/2020   | 0.4200       | 26.0000       | 8.8           | 1.10         | 7.6             | 130.0          |
|             | 10/13/2020  | 0.4070       | 27.0000       | 9.0           | 1.00         | 7.5             | 130.0          |
|             |             |              |               |               |              |                 |                |

Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| <b>Location ID</b> | Sample Date |           |
|--------------------|-------------|-----------|
|                    |             | TDS, mg/L |
|                    |             |           |
| W76                | 10/12/2021  | 362.0     |
|                    | 4/13/2022   | 330.0     |
|                    |             |           |
| <b>W</b> 77        | 12/3/2015   | 410.0     |
|                    | 1/25/2016   | 396.0     |
|                    | 4/13/2016   | 412.0     |
|                    | 7/12/2016   | 428.0     |
|                    | 10/12/2016  | 388.0     |
|                    | 1/11/2017   | 386.0     |
|                    |             |           |
|                    | 4/10/2017   | 382.0     |
|                    | 8/31/2017   | 384.0     |
|                    | 10/24/2017  | 372.0     |
|                    | 1/18/2018   |           |
|                    | 4/16/2018   | 370.0     |
|                    | 10/22/2018  | 370.0     |
|                    | 4/15/2019   | 360.0     |
|                    | 10/29/2019  | 360.0     |
|                    |             |           |
|                    | 4/15/2020   | 300.0     |
|                    | 10/13/2020  | 370.0     |
|                    |             |           |

#### Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |              |               |               |              |                 |                |
|-------------|-------------|--------------|---------------|---------------|--------------|-----------------|----------------|
|             |             | B, tot, mg/L | Ca, tot, mg/L | Cl, tot, mg/L | F, tot, mg/L | pH (field), STD | SO4, tot, mg/L |
| W77         | 4/13/2021   | 0.4180       | 25.3000       | 9.2           | 1.10         | 7.6             | 133.0          |
|             | 10/12/2021  | 0.3960       | 25.5000       | 8.0           | 1.00         | 7.6             | 123.0          |
|             | 4/13/2022   | 0.4030       | 26.4000       | 8.7           | < 0.10       | 7.5             | 140.0          |

10:37:02 AM

#### Table 1. Pleasant Prairie Power Plant Ash Landfill: Appendix III Analytical Results

| Location ID | Sample Date |           |
|-------------|-------------|-----------|
|             |             | TDS, mg/L |
|             |             |           |
| W77         | 4/13/2021   | 334.0     |
|             | 10/12/2021  | 362.0     |
|             | 4/13/2022   | 348.0     |

#### TABLE 2. CCR RULE GROUNDWATER MONITORING WELL INFORMATION

ALTERNATE SOURCE DEMONSTRATION PLEASANT PRAIRIE POWER PLANT ASH LANDFILL PLEASANT PRAIRIE, WISCONSIN

| Well<br>Designation | Wisconsin<br>Unique Well<br>Number | Date Well<br>Installed | Drilling<br>Subcontractor | Drilling<br>Method | Gradient<br>Position | State Plane<br>Northing<br>(ft) | State Plane<br>Easting<br>(ft) | Latitude       | Longitude       | Ground<br>Surface<br>Elevation<br>(ft NAVD88) | Top of<br>Protective<br>Cover Pipe<br>Elevation<br>(ft NAVD88) | Top of Well<br>Riser<br>Elevation<br>(ft NAVD88) | Borehole<br>Drilled<br>Depth<br>(ft bgs) | Borehole<br>Bottom<br>Elevation<br>(ft NAVD88) | Well<br>Screen | Depth to<br>Well<br>Bottom<br>(ft bgs) | Top of Screen<br>Elevation<br>(ft NAVD88) | Elevation | Bedrock | Top of<br>Bedrock<br>Elevation<br>(ft NAVD88) |
|---------------------|------------------------------------|------------------------|---------------------------|--------------------|----------------------|---------------------------------|--------------------------------|----------------|-----------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------------|----------------|----------------------------------------|-------------------------------------------|-----------|---------|-----------------------------------------------|
| W17BR               | VN431                              | 10/1/2013              | Boart Longyear<br>Company | Sonic              | downgradient         | 213,385.17                      | 2,534,203.49                   | 42°33'57.3084" | -87°53'59.9346" | 688.31                                        | 690.55                                                         | 690.35                                           | 42.0                                     | 646.3                                          | 37.0           | 42.0                                   | 651.3                                     | 646.3     |         |                                               |
| W20B <sup>1</sup>   |                                    | 3/17/1993              | STS Consultants           | Rotary             | upgradient           | 212,752.70                      | 2,533,099.53                   | 42°33'51.3396" | -87°54'14.8968" | 684.30                                        |                                                                | 687.0                                            | 35.0                                     | 649.3                                          | 29.0           | 34.0                                   | 655.3                                     | 650.3     |         |                                               |
| W20D                | VQ580                              | 3/4/2015               | Cascade Drilling          | Sonic              | upgradient           | 212,757.97                      | 2,533,085.40                   | 42°33'51.3592" | -87°54'15.0776" | 686.45                                        | 689.03                                                         | 688.41                                           | 140.0                                    | 546.4                                          | 135.0          | 140.0                                  | 551.4                                     | 546.4     | 125.0   | 561.4                                         |
| W31B <sup>1</sup>   |                                    | 2/26/1993              | STS Consultants           | Rotary             | upgradient           | 211,923.81                      | 2,533,157.23                   | 42°33'43.1382" | -87°54'14.403"  | 681.00                                        |                                                                | 683.8                                            | 38.5                                     | 642.5                                          | 33.0           | 38.0                                   | 648.0                                     | 643.0     |         |                                               |
| W73                 | VN433                              | 10/2/2013              | Boart Longyear            | Sonic              | downgradient         | 213,367.88                      | 2,534,399.36                   | 42°33'57.0560" | -87°53'57.3214" | 688.66                                        | 691.07                                                         | 690.58                                           | 130.0                                    | 558.7                                          | 125.0          | 130.0                                  | 563.7                                     | 558.7     | 114.0   | 574.7                                         |

685.02

687.42

689.00

684.89

687.49

690.31

692.11

687.63

686.83

689.91

691.63

687.23

140.0

141.0

141.0

126.0

545.0

546.4

548.0

558.9

135.0

136.0

136.0

121.0

140.0

141.0

141.0

126.0

550.0

551.4

553.0

563.9

545.0

546.4

548.0

558.9

124.5

125.0

125.0

110.0

560.5

562.4

564.0

574.9

#### Notes:

"--" indicates data is not available or does not apply.

VQ578

VQ577

VQ576

VQ575

bgs = below ground surface

ft = foot/feet

W74

W75

W76

W77

HSA = Hollow Stem Auger

NAVD88 = North American Vertical Datum of 1988

Sonic = vibratory (i.e. roto-Sonic®)

1. The data source for ground surface and top of well riser elevations is STS Consultants Ltd. Final Hydrogeologic Investigation Report: Wisconsin Electric Power Company, Pleasant Prairie Power Plant Ash Landfill, Pleasant Prairie, Wisconsin. April 4, 1997.

2,533,126.93 42°33'56.9099" -87°54'14.3343"

2,533,540.32 42°33'56.8116" -87°54'08.8120"

2,534,065.51 42°33'56.4738" -87°54'01.8036"

2,534,660.05 42°33'45.2513" -87°53'54.2383

2. Ground surface, top of protective cover pipe and top of well riser elevations for wells were surveyed by A.W. Oakes & Son, Inc. on March 16, 2015 and March 27, 2015. Vertical datum assumed to be NAVD88

213,321.15

213,321.56

213,300.53

212,178.92

3. Horizontal datum is Wisconsin State Plane Coordinates South Zone, NAD 83.

3/3/2015

3/23/2015

3/24/2015

3/19/2015

4. All wells constructed with 2-inch nominal size schedule 80 PVC with 5-foot long 10-slot screens. All wells are screened in dolomite bedrock.

Company

Cascade Drilling

Cascade Drilling

Cascade Drilling

Cascade Drilling

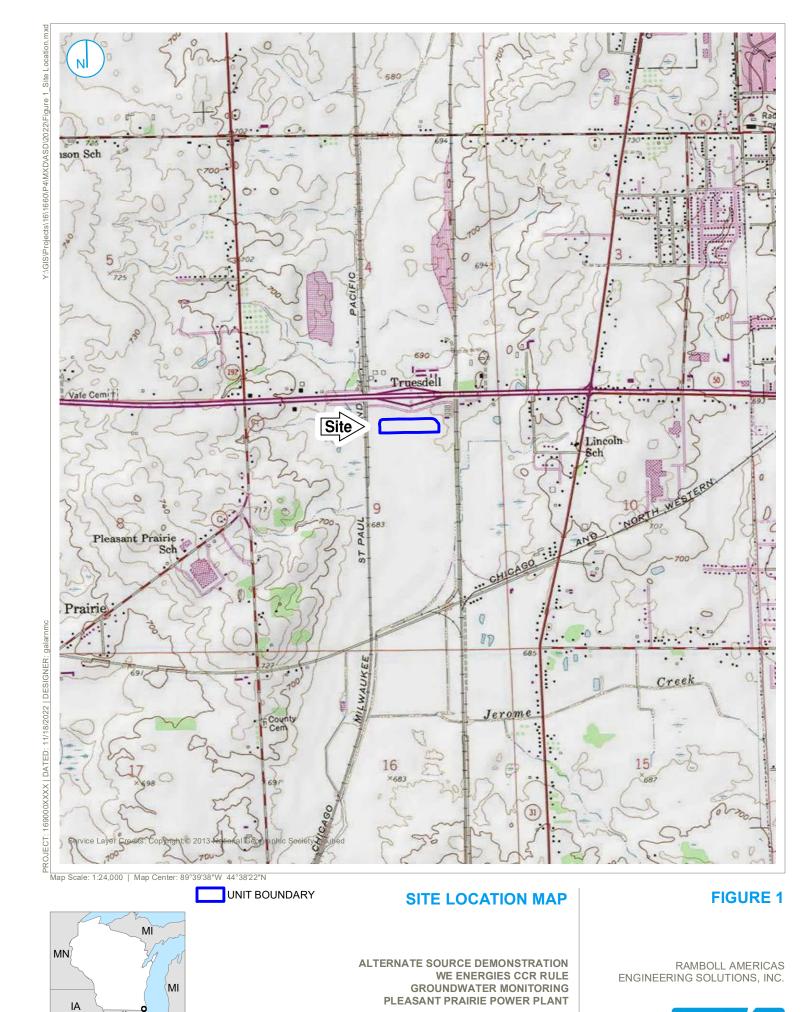
Sonic

Sonic

Sonic

Sonic

downgradient


downgradient

downgradient

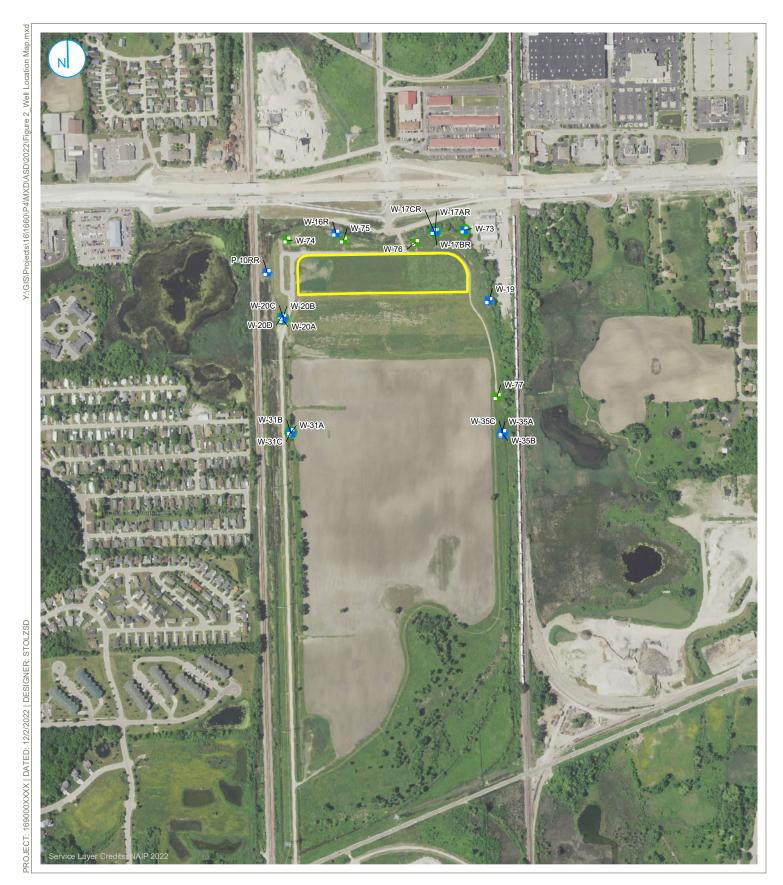
upgradient



#### **FIGURES**



IL KEY MAP 1,000


2,000

→ Feet

RAMBOLL

**ASH LANDFILL** 

PLEASANT PRAIRIE, WISCONSIN



UNIT BOUNDARY

ACTIVE WELL IN NR 500 MONITORING PROGRAM

🖶 ACTIVE WELL IN 40CFR PART 257 MONITORING PROGRAM

ACTIVE WELL IN BOTH NR500 AND 40CFR PART 257 MONITORING PROGRAMS

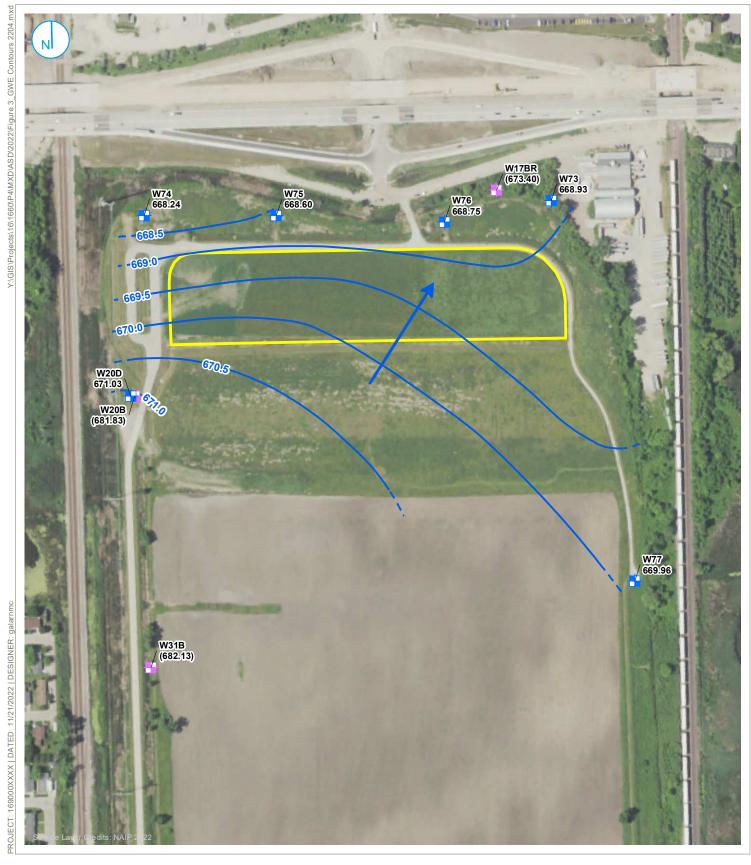

#### **WELL LOCATION MAP**

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL

ALTERNATE SOURCE DEMONSTRATION
WE ENERGIES CCR RULE GROUNDWATER MONITORING
PLEASANT PRAIRIE POWER PLANT ASH LANDFILL
PLEASANT PRAIRIE, WISCONSIN



UNIT BOUNDARY

BEDROCK UNIT (UPPERMOST AQUIFER) CCR MONITORING WELL LOCATION

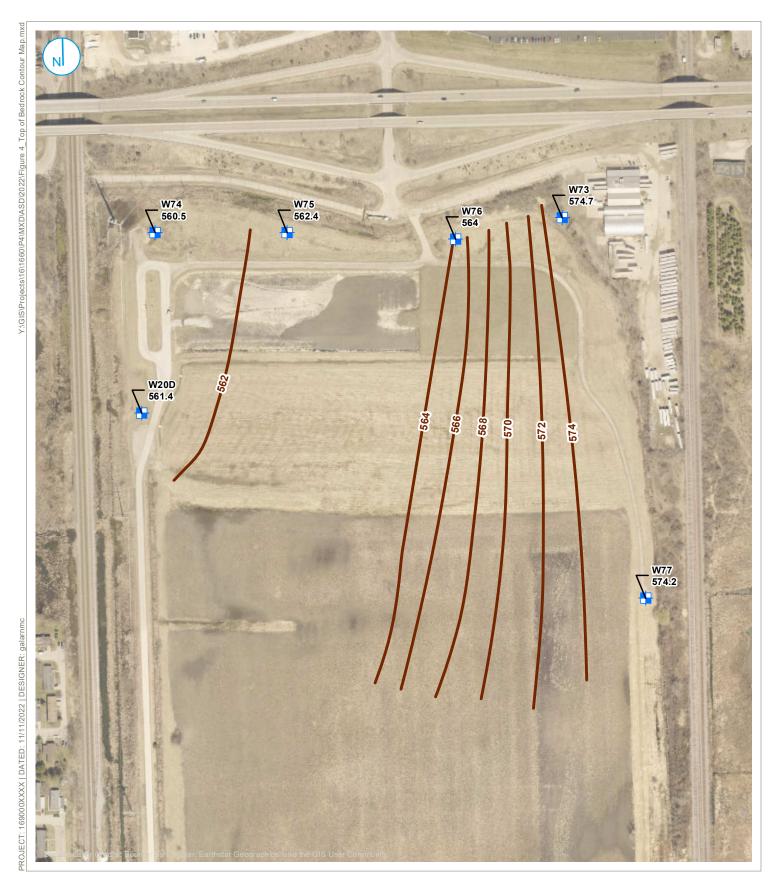
GLACIAL UNIT POTENTIAL CONTAMINANT PATHWAY CCR MONITORING WELL LOCATION (NOT USED FOR CONTOURING)

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR

GROUNDWATER FLOW DIRECTION

0 150 300


UPPERMOST AQUIFER UNIT GROUNDWATER ELEVATION CONTOUR MAP APRIL 13, 2022

ALTERNATE SOURCE DEMONSTRATION
WE ENERGIES CCR RULE GROUNDWATER MONITORING
PLEASANT PRAIRIE POWER PLANT ASH LANDFILL
PLEASANT PRAIRIE, WISCONSIN

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.





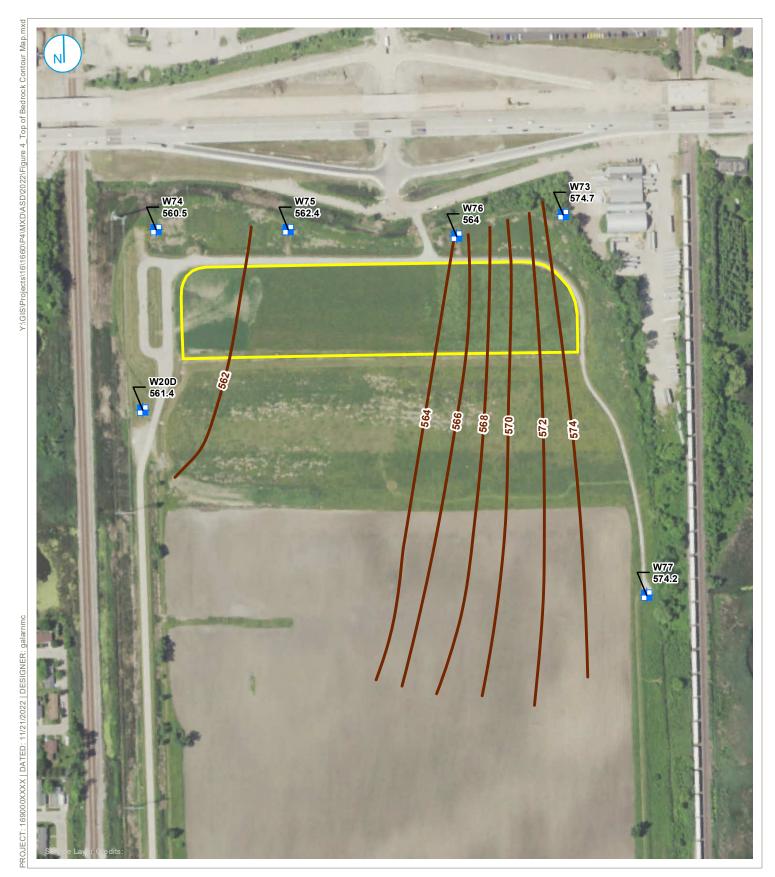
**+** 

BEDROCK UNIT MONITORING WELL LOCATION

BEDROCK ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88)

#### **BEDROCK ELEVATION CONTOUR MAP**

**FIGURE 4** 


ALTERNATE SOURCE DEMONSTRATION WE ENERGIES CCR RULE GROUNDWATER MONITORING

PLEASANT PRAIRIE POWER PLANT ASH LANDFILL PLEASANT PRAIRIE, WISCONSIN

ENGINEERING SOLUTIONS, INC.



RAMBOLL AMERICAS

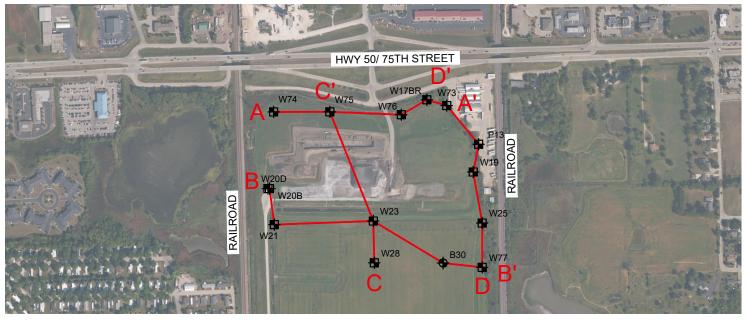


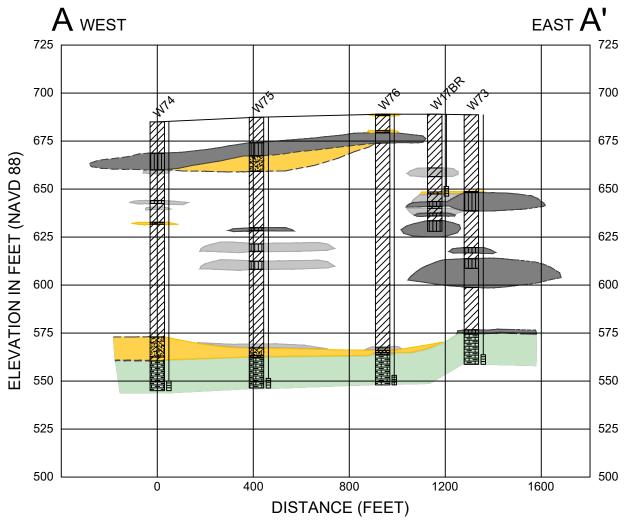
UNIT BOUNDARY

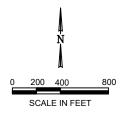
150

**BEDROCK ELEVATION CONTOUR MAP** BEDROCK UNIT MONITORING WELL LOCATION

**FIGURE 4** 

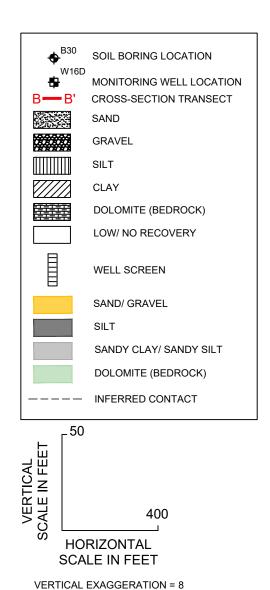

BEDROCK ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88)


ALTERNATE SOURCE DEMONSTRATION WE ENERGIES CCR RULE GROUNDWATER MONITORING


RAMBOLL

ENGINEERING SOLUTIONS, INC.

RAMBOLL AMERICAS

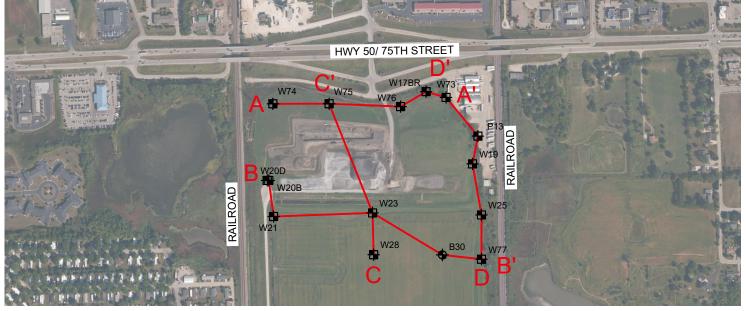


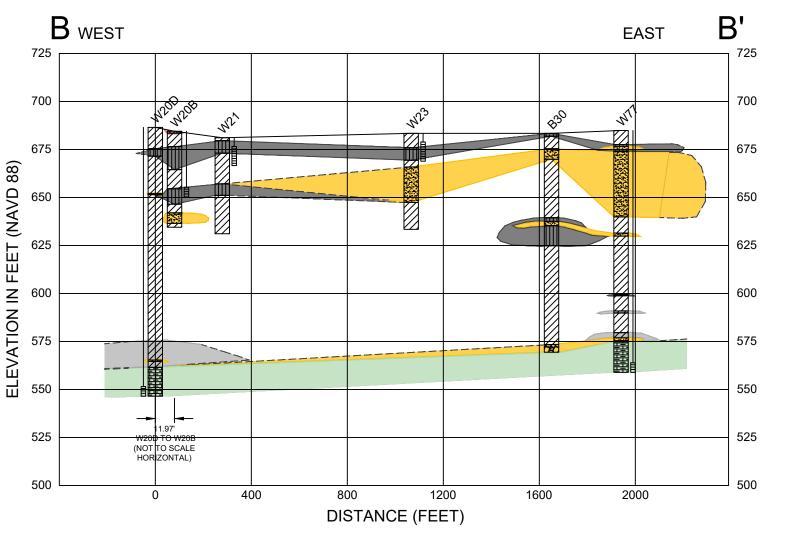


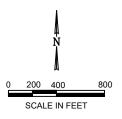



#### SOURCE NOTES:

- DIGITAL ORTHOPHOTO FROM BING MAPS © 2012. COORDINATE SYSTEM IS NAD27 WISCONSIN STATE PLANE, SOUTH ZONE, U.S. FOOT.

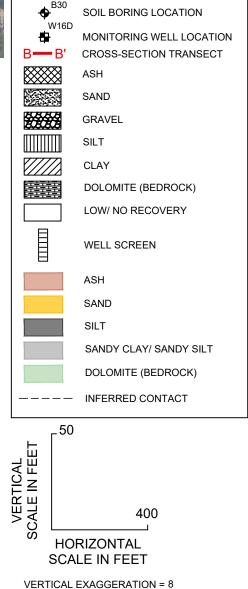




#### **GEOLOGIC CROSS-SECTION A-A'**


#### FIGURE 5

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.



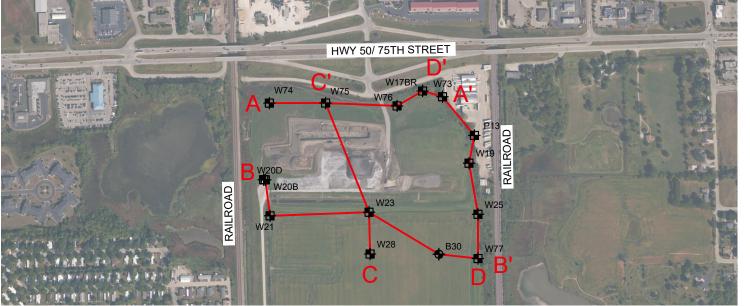


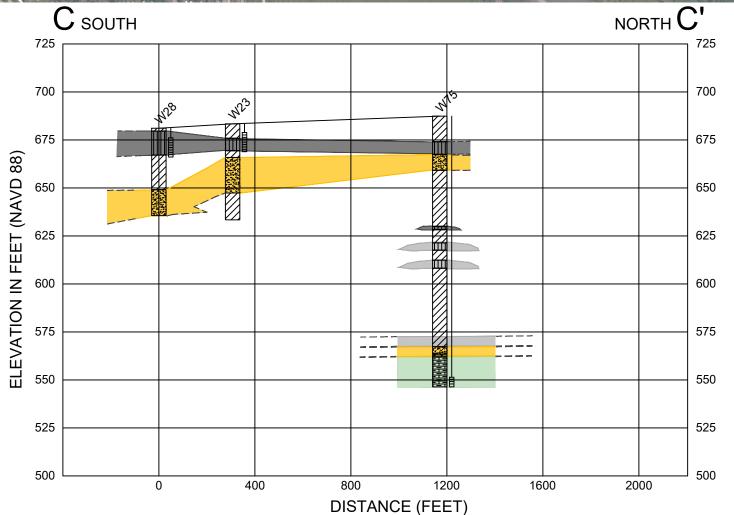


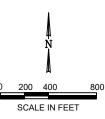



#### SOURCE NOTES:

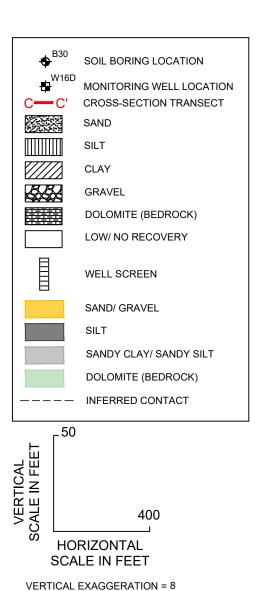
- DIGITAL ORTHOPHOTO FROM BING MAPS © 2012.
  COORDINATE SYSTEM IS NAD27 WISCONSIN STATE PLANE, SOUTH
- 2. COORDINATE SYSTEM IS NAD27 WISCONSIN STATE PLANE, SOUTH ZONE, U.S. FOOT.





#### **GEOLOGIC CROSS-SECTION B-B'**


#### FIGURE 6

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.



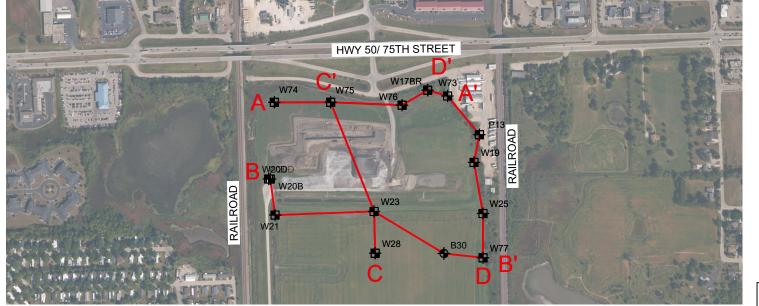


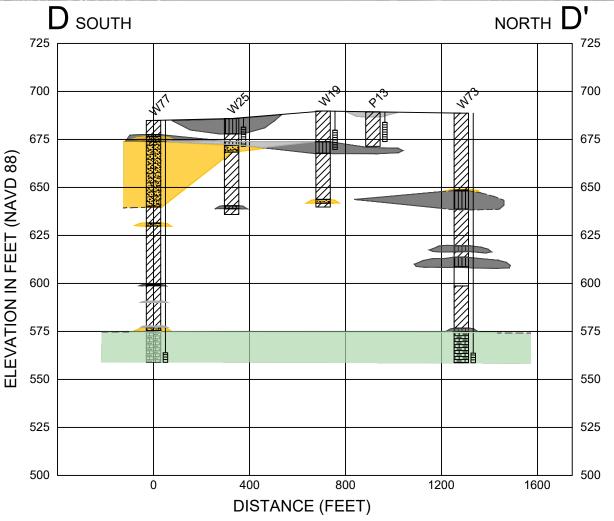


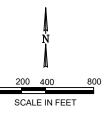



- DIGITAL ORTHOPHOTO FROM BING MAPS © 2012. COORDINATE SYSTEM IS NAD27 WISCONSIN STATE PLANE, SOUTH ZONE, U.S. FOOT.



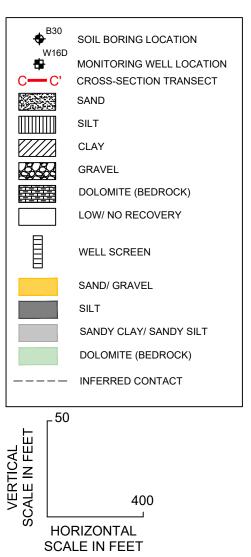

#### **GEOLOGIC CROSS-SECTION C-C'**


FIGURE 7


RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

RAMBOLL










#### SOURCE NOTES:

- DIGITAL ORTHOPHOTO FROM BING MAPS © 2012. COORDINATE SYSTEM IS NAD27 WISCONSIN STATE PLANE, SOUTH ZONE, U.S. FOOT.



#### **GEOLOGIC CROSS-SECTION D-D'**

VERTICAL EXAGGERATION = 8

#### FIGURE 8

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.





UNIT BOUNDARY

BEDROCK UNIT (UPPERMOST AQUIFER) CCR MONITORING WELL LOCATION

GLACIAL UNIT POTENTIAL CONTAMINANT PATHWAY CCR MONITORING WELL LOCATION (NOT USED FOR CONTOURING)

GROUNDWATER ELEVATION CONTOUR (1-FT INTERVAL, NAVD 88)

INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION WE ENERGIES CCR RULE GROUNDWATER MONITORING

150 300 → Feet

**POTENTIAL CONTAMINANT PATHWAY GROUNDWATER ELEVATION CONTOUR MAP** 

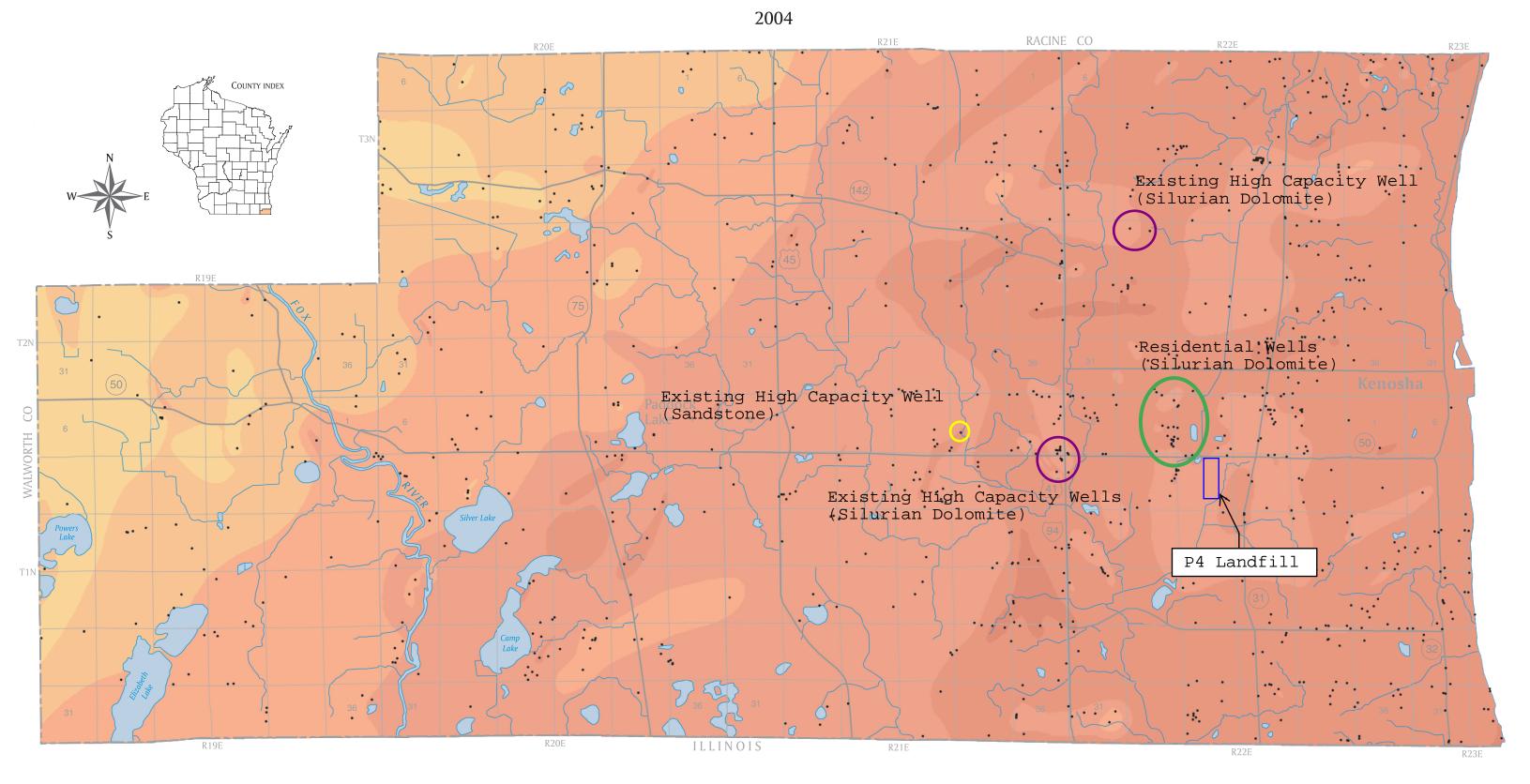
**APRIL 13, 2022** 

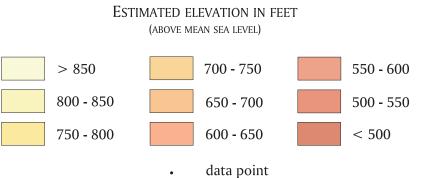
PLEASANT PRAIRIE POWER PLANT ASH LANDFILL

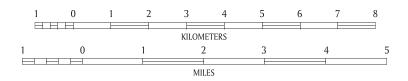
**ALTERNATE SOURCE DEMONSTRATION** 

PLEASANT PRAIRIE, WISCONSIN

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.


RAMBOLL


FIGURE 9


ATTACHMENT A
PRELIMINARY BEDROCK TOPOGRAPHY MAP OF
KENOSHA COUNTY, WISCONSIN

### Preliminary bedrock topography map of Kenosha County, Wisconsin

R.M. Peters







Wisconsin Transverse Mercator Projection 1991 adjustment to the North American Datum of 1983 (NAD 83/91) This map represents work performed by the Wisconsin Geological and Natural History Survey and is released to the open files in the interest of making the information readily available. This map has not been edited or reviewed for conformity with Wisconsin Geological and Natural History Survey standards and nomenclature.

This map is part of an ongoing project funded by STATEMAP, the state component of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey.



Wisconsin Geological and Natural History Survey 3817 Mineral Point Road, Madison, Wisconsin 53705-5100 phone 608/263-7389 fax 608/262-8086 www.uwex.edu/wgnhs/

James M. Robertson, Director and State Geologist

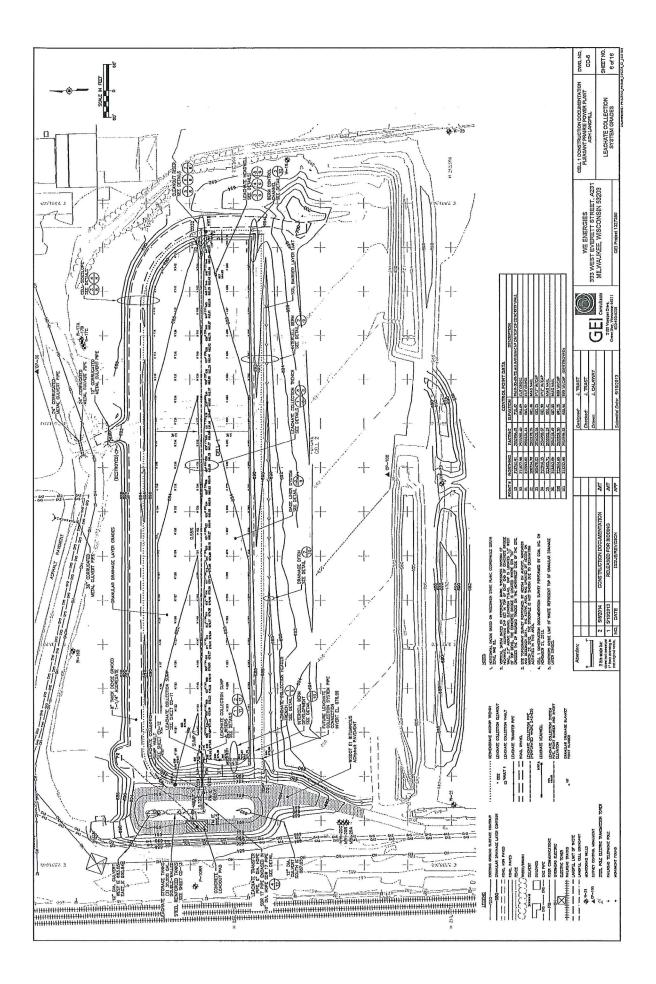
Data entry and processing by K.K. Zeiler. Cartography by D.L. Patterson.

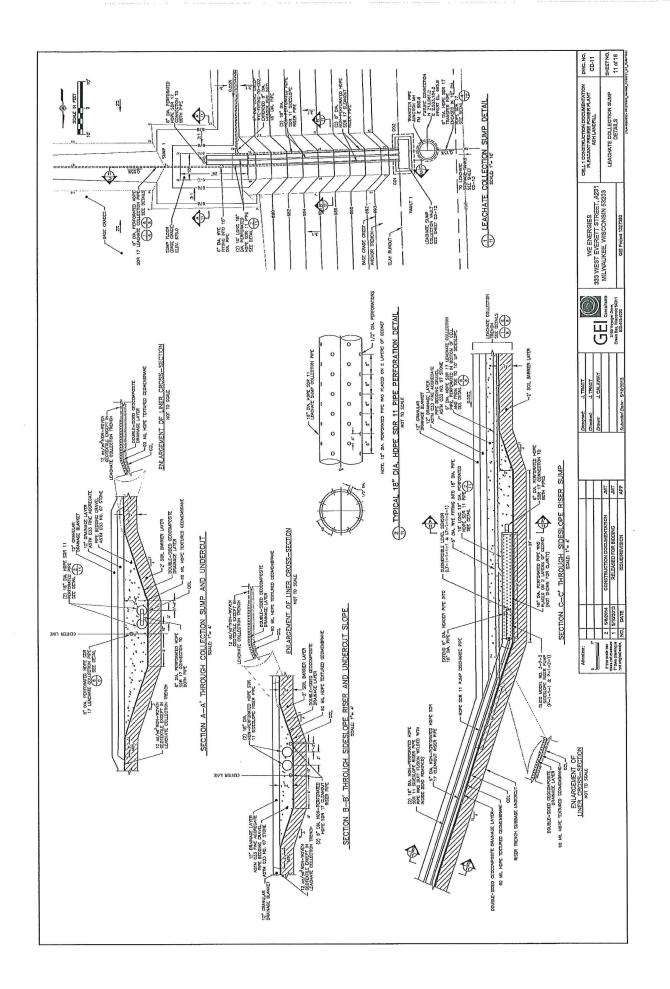
Wisconsin Geological and Natural History Survey Open-File Report 2004-13B

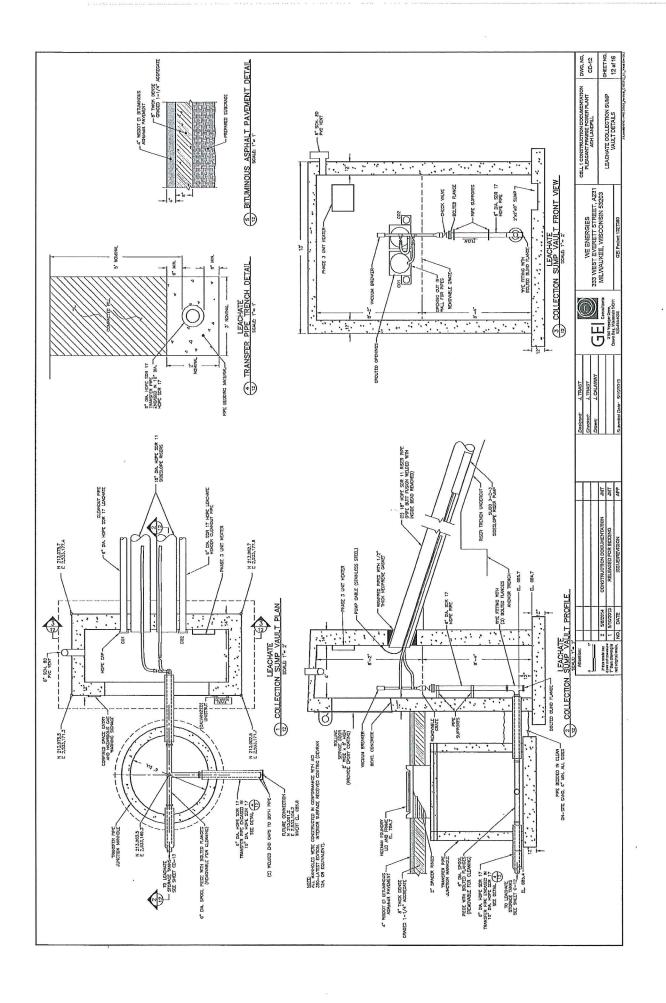
#### APPENDIX D

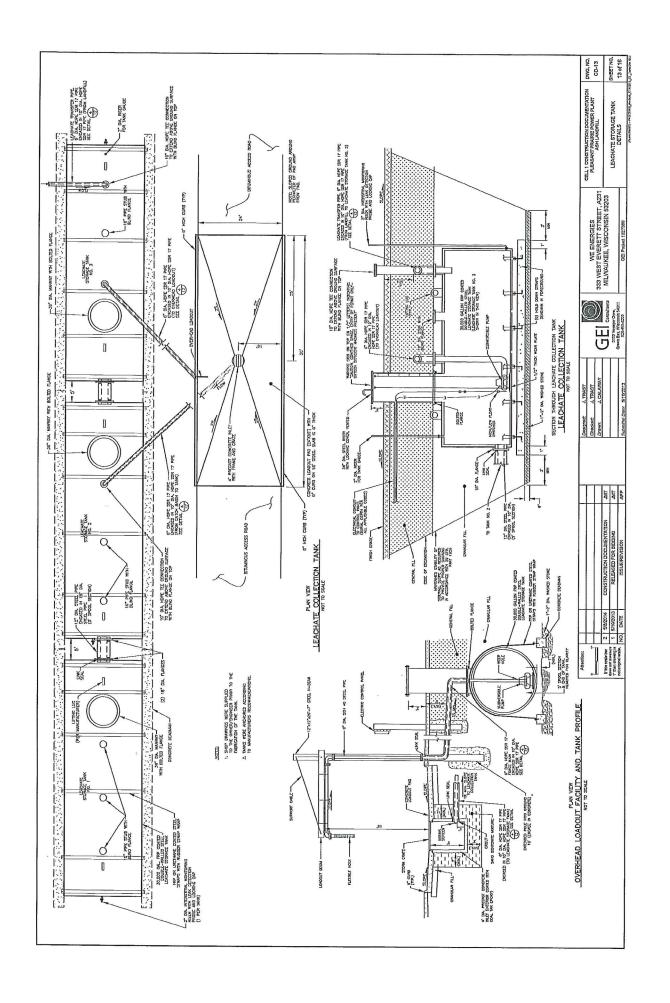
#### 2022 LEACHATE PIPE CLEANING AND INSPECTION REPORT [PER NR 506.20(3)(D)]

#### We Energies


#### PLEASANT PRAIRIE POWER PLANT ASH LANDFILL #3 - LICENSE #2786


### DOCUMENTATION FOR HIGH PRESSURE WATER JET CLEANING OF LEACHATE COLLECTION SYSTEMS


| Name of contractor: Grea                       | t Lakes TV Seal, Inc.                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date work was performed: _10/1                 | .9/2022                                                                                                                                                                                                                                                                                                                                                                                                               |
| Description of water jet cleaning s            | system:                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2015 Vactor 2100 Plus 80 gpm                   | at 2500 psi                                                                                                                                                                                                                                                                                                                                                                                                           |
| Enz Roto Pulse Nozzle                          |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Used 7,000 gallons of water to jet             | landfill                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Foreman: Greg Healy<br>Laborer: Ruvisel Cortez |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Each end (see attached sheets for l  X         | ault CO 1 to CO 32 ne – Temp CO to Sump1 ne – Riser Vault CO 2 to Temp CO ove sediment from sump of both Cell 1 riser pipes pump discharge hoses clean vacuum break, check valves and standpipe asfer manhole to Cell 1 riser vault asfer manhole to storage tank remove sediment & liquid amp – remove sediment & liquid e – loadout sump to storage tank move sediment alization headers & remove sediment sediment |


| Problems encountered:    | Yes   | _ No | Х |
|--------------------------|-------|------|---|
| Description of problems: |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
| Repairs performed:       | Yes   | _ No | X |
| Description of repairs:  |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
|                          |       |      |   |
| Signed:                  | On 15 |      |   |

Return completed form to – Eric Kovatch









# **CLEANING REPORTS**



# 3600 Kewaunee Rd. Green Bay, WI 54311 920-863-3663

# **CLEANING REPORT**

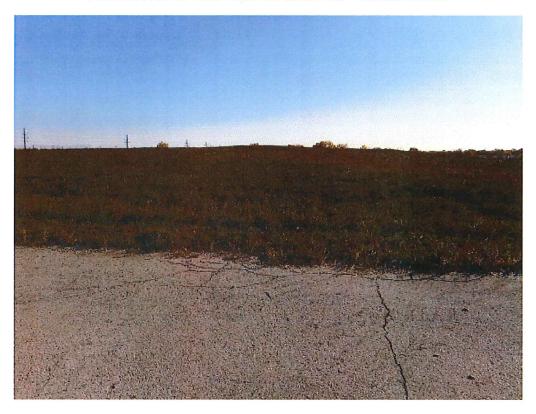
DATE: 10/19/2022

OWNER: We Energies

LOCATION: Pleasant Prairie Power Plant Ash Landfill - License #2786

CONTRACTOR: Edgerton Contractors
LEACHATE: ☐ STORM: □

| Environment of the Control of the Co |                             |                             |   |  |   |  | <br> | <br> |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|---|--|---|--|------|------|--|
| REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Jetted 550' / Jetted slowly | Jetted 650' / Jetted slowly |   |  | 3 |  |      |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | Jetted                      |   |  |   |  |      |      |  |
| Easement<br>Machine<br>used?<br>Y N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                           | ×                           |   |  |   |  |      |      |  |
| PIPE<br>LENGTH<br>(feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                             | 4 |  |   |  |      |      |  |
| PIPE<br>SIZE<br>(inch)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                           | 9                           |   |  |   |  |      |      |  |
| CTION MH<br>TO MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO 1                        | CO 32                       |   |  |   |  |      |      |  |
| SECTION<br>MH TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CO 32                       | CO 1                        |   |  |   |  |      |      |  |


## **PICTURES**

We Energies Pleasant Prairie Power Plant Ash Landfill #3 – License #22786





We Energies Pleasant Prairie Power Plant Ash Landfill #3 – License #22786





We Energies Pleasant Prairie Power Plant Ash Landfill #3 – License #22786



